Menu

Blog

Archive for the ‘particle physics’ category: Page 420

Mar 10, 2020

Confirmed: Lightning Causes Nuclear Reactions in the Sky

Posted by in categories: climatology, nuclear energy, particle physics

Circa 2017 o.o


Lightning is nuts. It’s a supercharged bolt of electricity extending from the sky to the ground that can kill people. But it can also produce nuclear reactions, according to new research.

Scientists have long known that thunderstorms can produce high-energy radiation, like this one from December, 2015 that blasted a Japanese beach town with some gamma radiation. But now, another team of researchers in Japan are reporting conclusive evidence of these gamma rays setting off atom-altering reactions like those in a nuclear reactor.

Mar 9, 2020

Supersymmetry is super-awesome. Here’s what it means for particle physics

Posted by in categories: particle physics, quantum physics

In the 1970s, physicists uncovered a potential symmetry that united all the kinds of particles in our universe. This connection, known as supersymmetry, relies on the strange quantum property of spin, and could help unlock a new understanding of physics.

Mar 8, 2020

Teleportation becomes a science fact, no longer fiction

Posted by in categories: particle physics, space

Teleportation is no longer science fiction, says a team of Chinese scientists, after teleporting a photon particle from the Earth’s surface to an orbiting satellite 870 miles (1,400 km) away. This does not mean, however, that we are now able to beam people up and down like Star Trek’s captains James Kirk, Jean-Luc Picard, or Kathryn Janeway – that is still very much in the realm of science fiction, physicists say.

Teleportation, also known as teletransportation, is the theoretical transfer of energy or matter from one point to another instantly – without traveling through the physical space between them.

Continue reading “Teleportation becomes a science fact, no longer fiction” »

Mar 7, 2020

This Is the World’s First Image of Quantum Entanglement

Posted by in categories: particle physics, quantum physics, space

During the 1930s, venerable theoretical physicist Albert Einstein returned to the field of quantum mechanics, which his theories of relativity helped to create. Hoping to develop a more complete theory of how particles behave, Einstein was instead horrified by the prospect of quantum entanglement — something he described as “spooky action at a distance.”

Despite Einstein’s misgivings, quantum entanglement has gone on to become an accepted part of quantum mechanics. And now, for the first time ever, a team of physicists from the University of Glasgow took an image of a form of quantum entanglement (aka Bell entanglement) at work. In so doing, they managed to capture the first piece of visual evidence of a phenomenon that baffled even Einstein himself.

The paper that described their findings, titled “Imaging Bell-type nonlocal behavior,” recently appeared in the journal Science Advances. The study was led by Dr. Paul-Antoine Moreau, a Leverhulme Early Career Fellow at the University of Glasgow, and included multiple researchers from Glasgow’s School of Physics & Astronomy.

Mar 7, 2020

Physicists have narrowed the mass range for hypothetical dark matter axions

Posted by in categories: cosmology, particle physics

In two new studies, scientists search for axions within new mass ranges but the particles remain elusive.

Mar 6, 2020

Scientists think they’ve finally figured out dark matter

Posted by in categories: cosmology, particle physics

When astronomers gaze into space they can see many different things. Galaxies, stars, and even black holes can be spotted from our place here on Earth. However, one of the most abundant types of matter in the universe can’t actually be seen at all, or at least we’ve yet to invent the means to do so.

Dark matter may account for over three-quarters of all matter in the universe, but it can’t be observed directly. Instead, scientists have to infer its existence based on how other objects in the cosmos react to its gravity. But what is it, and will we ever be able to explain its origins? A new study by researchers at the University of York attempts to do just that, offering a potential explanation for what dark matter really is.

The researchers say that the secret of dark matter may rest in a type of particle called a d-star hexaquark. As SciTechDaily notes, it’s a particle made up of six quarks, which are the tiny bits that make up protons and neutrons, but because of their arrangement in a d-star, they are more versatile.

Mar 6, 2020

Did this newfound particle form the universe’s dark matter?

Posted by in categories: cosmology, particle physics

Researchers think that a newly identified subatomic particle may have formed the universe’s dark matter right after the Big Bang, approximately 13.8 billion years ago.

While scientists have determined that up to 80% of the matter in the universe could be dark matter, our understanding of what the mysterious substance might be is still lacking, as no one has ever directly observed it.

Mar 6, 2020

The Man Who Cracked The Code to Everything …

Posted by in categories: alien life, computing, mathematics, particle physics

Circa 2002 4 lines of code to solve everything.


… But first it cracked him. The inside story of how Stephen went from boy genius to recluse to science renegade.

Word had been out that Stephen, the onetime enfant terrible of the science world, was working on a book that would Say It All, a paradigm-busting tome that would not only be the definitive account on complexity theory but also the opening gambit in a new way to view the universe. But no one had read it.

Continue reading “The Man Who Cracked The Code to Everything ...” »

Mar 5, 2020

Physicists link quantum memories across the longest distance ever

Posted by in categories: cybercrime/malcode, internet, particle physics, quantum physics

A team of scientists in China has linked quantum memories over more than 30 miles (50 kilometers) of fiber optic cable, beating the previous record by more than 40 times over. This feat is an important step toward a hack-proof internet, scientists said.

The internet we use today was truly a revolutionary invention. It connected the world with information and allowed us to share millions of photos of cute and cuddly cats. But the internet is also filled with hackers trying to intercept important or sensitive information. To fight back, physicists have come up with a solution, with a little help from Schrödinger’s cat, the famous, hypothetical dead-and-alive feline meant to expose the weird nature of subatomic particles.

Mar 5, 2020

Researchers propose new physics to explain decay of subatomic particle

Posted by in category: particle physics

Florida State University physicists believe they have an answer to unusual incidents of rare decay of a subatomic particle called a Kaon that were reported last year by scientists in the KOTO experiment at the Japan Proton Accelerator Research Complex.

FSU Associate Professor of Physics Takemichi Okui and Assistant Professor of Physics Kohsaku Tobioka published a new paper in the journal Physical Review Letters that proposes that this decay is actually a new, short-lived particle that has avoided detection in similar experiments.

“This is such a rare disintegration,” Okui said. “It’s so rare, that they should not have seen any. But if this is correct, how do we explain it? We think this is one possibility.”