Toggle light / dark theme

Single-atom catalysts transform hydrogenation, improving food and fuel production

A chemical reaction that’s vital to a range of commercial and industrial goods may soon be initiated more effectively and less expensively thanks to a collaboration that included Oregon State University College of Engineering researchers.

The study, published in Nature, involves —adding the diatomic hydrogen molecule, H2, to other compounds.

“Hydrogenation is a critical and diverse reaction used to create food products, fuels, commodity chemicals and pharmaceuticals,” said Zhenxing Feng, associate professor of chemical engineering. “However, for the reaction to be economically viable, a catalyst such as palladium or platinum is invariably required to increase its reaction rate and thus lower cost.”

The Particle That Might Explain Why Anything Exists at All

Scientists at CERN have made a groundbreaking discovery that deepens our understanding of why the Universe is made of matter and not antimatter. By analyzing an enormous trove of data from the LHC, researchers observed a subtle but significant asymmetry in the behavior of a particle called the be

Direct experimental constraints on the spatial extent of a neutrino wavepacket

An innovative method using superconducting sensors precisely measures the recoil energy of lithium-7 nuclei, setting a lower limit on the spatial extent of neutrino wavepackets, advancing understanding of neutrino properties and weak nuclear decays.

An exception to the laws of thermodynamics: Shape-recovering liquid defies textbooks

A team of researchers led by a physics graduate student at the University of Massachusetts Amherst made the surprising discovery of what they call a “shape-recovering liquid,” which defies some long-held expectations derived from the laws of thermodynamics.

The research, published in Nature Physics, details a mixture of oil, water and magnetized particles that, when shaken, always quickly separates into what looks like the classically curvaceous lines of a Grecian urn.

“Imagine your favorite Italian salad dressing,” says Thomas Russell, Silvio O. Conte Distinguished Professor of Polymer Science and Engineering at UMass Amherst and one of the paper’s senior authors.

Hot Schrödinger cat states created

Quantum states can only be prepared and observed under highly controlled conditions. A research team from Innsbruck, Austria, has now succeeded in creating so-called hot Schrödinger cat states in a superconducting microwave resonator. The study, published in Science Advances, shows that quantum phenomena can also be observed and used in less perfect, warmer conditions.

Schrödinger cat states are a fascinating phenomenon in in which a quantum object exists simultaneously in two different states. In Erwin Schrödinger’s , it is a cat that is alive and dead at the same time.

In real experiments, such simultaneity has been seen in the locations of atoms and molecules and in the oscillations of electromagnetic resonators.

Iron nitride’s magnetoelastic properties show potential for flexible spintronics

The field of spintronics, which integrates the charge and spin properties of electrons to develop electronic devices with enhanced functionality and energy efficiency, has expanded into new applications.

Beyond current technologies such as read heads and magnetic random-access memory (MRAM), researchers are now investigating flexible spintronics for use in wearable devices and sheet-type sensors.

For these applications, detecting small changes in through electrical resistance modulation is essential. This requires not only materials with significant magnetoresistance effects but also control over their magnetoelastic properties.

New Quark Discovery Reveals a Critical Clue About The Birth of The Universe

A pair of top quarks has been detected in the detritus spraying forth from the collision of two atoms of lead.

It’s the first time that this specific quark-antiquark pair has been spotted in a collision between two nuclei. The detection strengthens evidence that all six quark flavors existed at the dawn of time, in the soupy quark-gluon plasma thought to have suffused the Universe in the moments after the Big Bang.

This means that we’re a step closer to taking new measurements of this primordial soup, and gleaning new insights into how our Universe formed from the very beginning.

Intriguing excess of top-quark pairs hints at discovery of smallest composite particle

The CMS collaboration at CERN has observed an unexpected feature in data produced by the Large Hadron Collider (LHC), which could point to the existence of the smallest composite particle yet observed. The result, reported at the Rencontres de Moriond conference in the Italian Alps this week, suggest that top quarks—the heaviest and shortest lived of all the elementary particles—can momentarily pair up with their antimatter counterparts to produce an object called toponium.

Other explanations cannot be ruled out, however, as the existence of toponium was thought too difficult to verify at the LHC, and the result will need to be further scrutinized by CMS’s sister experiment, ATLAS.

High-energy collisions between protons at the LHC routinely produce top quark–antiquark pairs (tt-bar). Measuring the probability, or cross section, of tt-bar production is both an important test of the Standard Model of particle physics and a powerful way to search for the existence of new particles that are not described by the 50-year-old theory. Many of the open questions in particle physics, such as the nature of dark matter, motivate the search for new particles that may be too heavy to have been produced in experiments so far.

Proxima Centauri’s Violent Flares May Endanger Life on Nearby Planets

Located just over four light-years away, Proxima Centauri is our closest stellar neighbor and a highly active M dwarf star. While its frequent flaring has long been observed in visible light, a recent study using the Atacama Large Millimeter/submillimeter Array (ALMA) reveals that Proxima Centauri also exhibits intense activity at radio and millimeter wavelengths. These observations provide new insights into the particle-driven nature of its flares and raise important questions about the star’s impact on the habitability of its surrounding planets.

Proxima Centauri is known to host at least one potentially habitable, Earth-sized planet within its habitable zone. Like solar flares on our Sun, Proxima’s flares emit energy across the electromagnetic spectrum and release bursts of high-energy particles known as stellar energetic particles.

The intensity and frequency of these flares could pose a serious threat to nearby planets. If powerful enough, they can erode planetary atmospheres, stripping away critical components like ozone and water, and potentially rendering these worlds uninhabitable.

Scientists discover “Half-Ice, Half-Fire” — A new exotic phase of matter

Discovering and controlling exotic physical states is key in condensed matter physics and materials science. It has the potential to drive advancements in quantum computing and spintronics.

- Advertisement -

While studying a ferrimagnet model, scientists at the U.S. Department of Energy’s Brookhaven National Laboratory uncovered a new phase of matter called “half-ice, half-fire.” This state is a twin to the “half-fire, half-ice” phase discovered in 2016.