Quantum Mechanics is the science behind nuclear energy, smart phones, and particle collisions. Yet, almost a century after its discovery, there is still controversy over what the theory actually means. The problem is that its key element, the quantum-mechanical wave function describing atoms and subatomic particles, isn’t observable. As physics is an experimental science, physicists continue to argue over whether the wave function can be taken as real, or whether it is just a tool to make predictions about what can be measured—typically large, “classical” everyday objects.
The view of the antirealists, advocated by Niels Bohr, Werner Heisenberg, and an overwhelming majority of physicists, has become the orthodox mainstream interpretation. For Bohr especially, reality was like a movie shown without a film or projector creating it: “There is no quantum world,” Bohr reportedly affirmed, suggesting an imaginary border between the realms of microscopic, “unreal” quantum physics and “real,” macroscopic objects—a boundary that has received serious blows by experiments ever since. Albert Einstein was a fierce critic of this airy philosophy, although he didn’t come up with an alternative theory himself.
For many years only a small number of outcasts, including Erwin Schrödinger and Hugh Everett populated the camp of the realists. This renegade view, however, is getting increasingly popular—and of course triggers the question of what this quantum reality really is. This is a question that has occupied me for many years, until I arrived at the conclusion that quantum reality, deep down at the most fundamental level, is an all-encompassing, unified whole: “The One.”
One of Albert Einstein’s theory of general relativity’s most fascinating predictions is the possibility of black holes, which are created after a massive star reaches the end of its life and collapses. Supermassive black holes as big as 100,000 or ten billion times the Sun are commonly found at the center of most galaxies.
Those are the biggest form of black holes, but it is also thought that primordial black holes (PBHs) also exist. Unlike the big ones, these tiny black holes emerged in the early cosmos through the gravitational collapse of extraordinarily dense areas.
Physics gets strange at the atomic scale. Scientists are utilizing quantum analog simulators – laboratory experiments that involve cooling numerous atoms to low temperatures and examining them using precisely calibrated lasers and magnets – to uncover, harness, and control these unusual quantum effects.
Scientists hope that any new understanding gained from quantum simulators will provide blueprints for designing new exotic materials, smarter and more efficient electronics, and practical quantum computers. But in order to reap the insights from quantum simulators, scientists first have to trust them.
That is, they have to be sure that their quantum device has “high fidelity” and accurately reflects quantum behavior. For instance, if a system of atoms is easily influenced by external noise, researchers could assume a quantum effect where there is none. But there has been no reliable way to characterize the fidelity of quantum analog simulators, until now.
These tiny black holes lose mass faster than their massive counterparts, emitting Hawking radiation until they finally evaporate.
One of the most intriguing predictions of Einstein’s general theory of relativity.
When a sufficiently massive star runs out of fuel, it explodes, and the remaining core collapses, leading to the formation of a stellar black hole (ranging from 3 to 100 solar masses).
Supermassive black holes also exist in the center of most galaxies.
Through optomechanical experiments, scientists aim to delve into the boundaries of the quantum realm and lay the groundwork for the creation of highly sensitive quantum sensors. In these experiments, everyday visible objects are coupled to superconducting circuits through electromagnetic fields.
To produce functional superconductors, these experiments are conducted inside cryostats at a temperature of around 100 millikelvins. However, this is still far from low enough to truly enter the quantum world. In order to observe quantum effects on large-scale objects, they must be cooled to nearly absolute zero.
Absolute zero is the theoretical lowest temperature on the thermodynamic temperature scale. At this temperature, all atoms of an object are at rest and the object does not emit or absorb energy. The internationally agreed-upon value for this temperature is −273.15 °C (−459.67 °F; 0.00 K).
The only things that travel at the speed of light are photons. Nothing with any mass at all can travel at the speed of light because as it gets closer and closer to the speed of light, its mass increases. And if it were actually traveling at the speed of light, it would have an infinite mass. Light does not experience space or time. It’s not just a speed going through something. All of the universe shifts around this constant, the speed of light. Time and space itself stop when you go that speed.
MICHELLE THALLER: Dr. Michelle Thaller is an astronomer who studies binary stars and the life cycles of stars. She is Assistant Director of Science Communication at NASA. She went to college at Harvard University, completed a post-doctoral research fellowship at the California Institute of Technology (Caltech) in Pasadena, Calif. then started working for the Jet Propulsion Laboratory’s (JPL) Spitzer Space Telescope. After a hugely successful mission, she moved on to NASA’s Goddard Space Flight Center (GSFC), in the Washington D.C. area. In her off-hours often puts on about 30lbs of Elizabethan garb and performs intricate Renaissance dances. For more information, visit. NASA.
TRANSCRIPT: MICHELLE THALLER: So, Tom, you asked the question, “How does mass increase as you go faster?” And this is really a wonderful part of Einstein’s theories. It actually is also relatively slippery and kind of complicated because to even answer this question at all, we have to ask the rather strange question: “What do you mean by mass? What is your definition of mass?” You may have heard that nothing with mass can possibly go at the speed of light. The only things that travel at the speed of light are photons pure energy, light, the speed of light. Nothing with any mass at all can travel at the speed of light because as it gets closer and closer to the speed of light, its mass increases. And if it were actually traveling at the speed of light, it would have an infinite mass. So think about that. Even if you had a tiny little particle that was, say, billions of times less massive than an electron just a tiny, tiny little piece of mass if for some reason, that tiny thing accelerated to the speed of light, it would have an infinite mass. And that’s a bit of a problem. So let’s talk about this. One of the things that you really have to realize is the speed of light is very, very special. It’s not just simply a speed of something moving through space. As you go faster and faster and closer to the speed of light, time itself begins to slow down. And space begins to contract. As you go close to the speed of light, the entire universe becomes smaller and smaller until it basically just becomes a single point when you’re going at the speed of light. And time, as you go closer to the speed of light, gets slower and slower until basically time is a single point at the speed of light. Light does not experience space or time. It’s not just a speed going through something. All of the universe shifts around this constant, the speed of light. Time and space itself stop when you go that speed. So the reason you can’t accelerate to the speed of light, and the reason we say you have an infinite mass is a little complicated because the idea that mass actually is a measurement of energy. You may remember Einstein’s famous equation, E equals MC squared. Energy equals mass times the speed of light squared. Energy and mass are equivalent. Mass is basically a measurement of how much energy there is in an object. When you’re moving, you have the energy of your motion, too. That’s called kinetic energy, energy of motion. So E equals MC squared, now your mass has not just the stuff that’s in you but also the energy of your motion. And that’s why mass seems to increase as you go faster, and faster, and closer to the speed of light. It’s not that you are actually getting any heavier. The increase in mass is something that’s only observed by people that are watching you go by. If you were on a spaceship going very fast at the speed of light, you don’t notice anything getting heavier. You are on your spaceship. You could jump up and down. You can skip rope. You can do whatever you want. You don’t notice any change at all. But if people try to measure your mass as you go by, they not only are measuring your rest mass — your mass when you were still — but this added energy of this h…For the full transcript, check out https://bigthink.com/videos/speed-of-light
How to make a black hole. New videos DAILY: https://bigth.ink. Join Big Think Edge for exclusive video lessons from top thinkers and doers: https://bigth.ink/Edge.
There’s more than one way to make a black hole, says NASA’s Michelle Thaller. They’re not always formed from dead stars. For example, there are teeny tiny black holes all around us, the result of high-energy cosmic rays slamming into our atmosphere with enough force to cram matter together so densely that no light can escape.
CERN is trying to create artificial black holes right now, but don’t worry, it’s not dangerous. Scientists there are attempting to smash two particles together with such intensity that it creates a black hole that would live for just a millionth of a second.
Thaller uses a brilliant analogy involving a rubber sheet, a marble, and an elephant to explain why different black holes have varying densities. Watch and learn!
As fantastic as this may seem this is not an impossible occurrence.
Before Einstein, time travel was just a story, but his calculations led us into the quantum world and gave us a more complicated picture of time. Kurt Godel found that Einstein’s equations made it possible to go back in time. What’s up? None of the ideas about how to go back in time were ever physically possible.
Before sending a particle back in time, scientists from ETH Zurich, Argonne National Laboratory, and Moscow Institute of Physics and Technology asked, Why stick to physical grounds?
Many laws of physics treat the future and the past as if they are one thing. The second rule of thermodynamics says that in a closed system, order gives way to chaos (or entropy). When you scramble an egg to make an omelet, you add a lot of chaos to the egg, which was a closed system before.