Menu

Blog

Archive for the ‘particle physics’ category: Page 250

Feb 3, 2022

New atomic clock is the most precise ever created

Posted by in categories: particle physics, quantum physics

If scientists could measure the oscillations of just one energized cesium atom, they’d be able to keep perfect time, but they can’t due to a weird phenomenon called the standard quantum limit.

Instead, they have to measure thousands of atoms at once and then average out the results for atomic clocks, which leads to a just slightly imprecise second.

Now, MIT researchers have found a way to create a more precise atomic clock by exploiting another weird quantum phenomenon: entanglement.

Feb 2, 2022

‘Quantum friction’ slows water flow through carbon nanotubes, resolving long-standing fluid dynamics mystery

Posted by in categories: computing, nanotechnology, particle physics, quantum physics

For 15 years, scientists have been baffled by the mysterious way water flows through the tiny passages of carbon nanotubes—pipes with walls that can be just one atom thick. The streams have confounded all theories of fluid dynamics; paradoxically, fluid passes more easily through narrower nanotubes, and in all nanotubes it moves with almost no friction. What friction there is has also defied explanation.

In an unprecedented mashup of fluid dynamics and , researchers report in a new theoretical study published February 2 in Nature that they finally have an answer: ‘quantum .’

The proposed explanation is the first indication of quantum effects at the boundary of a solid and a liquid, says study lead author Nikita Kavokine, a research fellow at the Flatiron Institute’s Center for Computational Quantum Physics (CCQ) in New York City.

Feb 1, 2022

Koenigsegg’s Tiny Electric Motor Makes 335 HP and 443 LB-FT of Torque

Posted by in categories: particle physics, transportation

Dubbed the “Quark,” the motor weighs just 63 pounds.


Koenigsegg is also marketing an EV drive unit made up of two Quark motors, plus its small-but-powerful inverter, and small low-ratio planetary gearsets at each output shaft. The unit is called the “Terrier,” and serves up 670 hp and 811 lb-ft in a package that weighs just 187 pounds, and which offers torque vectoring across an axle. A Terrier can be bolted directly to a car’s monocoque as well.

More information on the Terrier unit is forthcoming, and presumably, it will be featured on future Koenigsegg products. As ever, the numbers are deeply impressive and entirely unsurprising from the innovative Swedish firm.

Continue reading “Koenigsegg’s Tiny Electric Motor Makes 335 HP and 443 LB-FT of Torque” »

Feb 1, 2022

Scientists successfully produced particle-antiparticle pairs from a vacuum

Posted by in categories: materials, particle physics

Cosmic physics mimicked on table-top as graphene enables Schwinger effect.

Jan 31, 2022

NVIDIA GPUs Enable Simulation of a Living Cell

Posted by in categories: chemistry, computing, genetics, particle physics

Researchers from the University of Illinois developed GPU-accelerated software to simulate a cell that metabolizes and grows like a living cell.


Every living cell contains its own bustling microcosm, with thousands of components responsible for energy production, protein building, gene transcription and more.

Scientists at the University of Illinois at Urbana-Champaign have built a 3D simulation that replicates these physical and chemical characteristics at a particle scale — creating a fully dynamic model that mimics the behavior of a living cell.

Continue reading “NVIDIA GPUs Enable Simulation of a Living Cell” »

Jan 31, 2022

Dr. Marvin Minsky — Facing the Future

Posted by in categories: bioengineering, government, life extension, particle physics, robotics/AI

Dr. Marvin Minsky — A.I. Pioneer & Mind Theorist. Professor of Media Arts and Sciences, MIT, Media Lab http://GF2045.com/speakers.

As soon as we understand how the human brain works, we should be able to make functional copies of our minds out of other materials. Given that everything is made of atoms, if you make a machine, in some sense it is made of the same kinds of materials as brains are made but organized either in very different ways or fundamentally the same ways.

Continue reading “Dr. Marvin Minsky — Facing the Future” »

Jan 31, 2022

IBM and CERN use quantum computing to hunt elusive Higgs boson

Posted by in categories: computing, finance, information science, particle physics, quantum physics

That is not to say that the advantage has been proven yet. The quantum algorithm developed by IBM performed comparably to classical methods on the limited quantum processors that exist today – but those systems are still in their very early stages.

And with only a small number of qubits, today’s quantum computers are not capable of carrying out computations that are useful. They also remain crippled by the fragility of qubits, which are highly sensitive to environmental changes and are still prone to errors.

Rather, IBM and CERN are banking on future improvements in quantum hardware to demonstrate tangibly, and not only theoretically, that quantum algorithms have an advantage.

Jan 30, 2022

Burning plasma! Controlled nuclear fusion on Earth briefly sustains itself

Posted by in categories: nuclear energy, particle physics

We’ve been trying for a long time to make a tiny Sun on Earth, one that would sustainably produce energy by nuclear fusion of hydrogen or similar atoms. Come to think of it, I’d like one for my basement.

Fusion requires quite a bit of heat to get going, but once it does, it starts producing its own heat. If you can keep that system contained so it doesn’t expand too much or allow too much heat to escape, further fusion happens. If it reaches a point where self-heating becomes the primary driver of fusion, you have yourself a “burning plasma”.

Continue reading “Burning plasma! Controlled nuclear fusion on Earth briefly sustains itself” »

Jan 30, 2022

How Mathematical ‘Hocus-Pocus’ Saved Particle Physics

Posted by in categories: mathematics, particle physics, quantum physics

“It is what I would call a dippy process,” Richard Feynman later wrote. “Having to resort to such hocus-pocus has prevented us from proving that the theory of quantum electrodynamics is mathematically self-consistent.”

Justification came decades later from a seemingly unrelated branch of physics. Researchers studying magnetization discovered that renormalization wasn’t about infinities at all. Instead, it spoke to the universe’s separation into kingdoms of independent sizes, a perspective that guides many corners of physics today.

Renormalization, writes David Tong, a theorist at the University of Cambridge, is “arguably the single most important advance in theoretical physics in the past 50 years.”

Jan 30, 2022

Massless particles can’t be stopped

Posted by in categories: cosmology, particle physics

If a particle has no mass, how can it exist?

Scientists think that, under some circumstances, dark matter could generate powerful enough gravitational waves for equipment like LIGO to detect.

Four physicists share their journeys through academia into industry and offer words of wisdom for those considering making a similar move.