Toggle light / dark theme

A new computational analysis by theorists at the U.S. Department of Energy’s Brookhaven National Laboratory and Wayne State University supports the idea that photons (a.k.a. particles of light) colliding with heavy ions can create a fluid of “strongly interacting” particles. In a paper just published in Physical Review Letters, they show that calculations describing such a system match up with data collected by the ATLAS detector at Europe’s Large Hadron Collider (LHC).

As the paper explains, the calculations are based on the hydrodynamic particle flow seen in head-on collisions of various types of ions at both the LHC and the Relativistic Heavy Ion Collider (RHIC), a DOE Office of Science user facility for research at Brookhaven Lab. With only modest changes, these calculations also describe seen in near-miss collisions, where that form a cloud around the speeding ions collide with the ions in the opposite beam.

“The upshot is that using the same framework we use to describe -lead and proton-lead collisions, we can describe the data of these ultra-peripheral collisions where we have a photon colliding with a lead nucleus,” said Brookhaven Lab theorist Bjoern Schenke, a co-author of the paper. “That tells you there’s a possibility that in these photon-ion collisions, we create a small dense strongly interacting medium that is well described by hydrodynamics—just like in the larger systems.”

Measurements of solar neutrinos proved that our star is powered by nuclear reactions and has brought to light many other details about the Sun’s inner workings. They also led to the discovery of neutrino oscillations—a phenomenon that is difficult to reconcile with established theories. Current neutrino research mostly relies on neutrinos generated on Earth by reactors and accelerators. But some physicists argue that there is still a lot to be done with neutrinos generated in the Sun. A new generation of solar-neutrino experiments may help in solving outstanding questions about both neutrinos and solar physics, these scientists say.

The study of solar neutrinos began in the late 1960s. Using a detector filled with dry-cleaning fluid and placed in South Dakota’s Homestake gold mine, physicist Raymond Davis and his colleagues observed the first neutrino signal from the Sun. They were surprised, however, to find that the number of neutrinos was one third of what models predicted—a mystery that led to a “neutrino gold rush,” with many new experiments staking claims to different energy and length scales related to the neutrino behavior. Eventually, physicists explained the missing neutrinos as resulting from oscillations between neutrino flavors (see Nobel Focus: Neutrino and X-ray Vision). These oscillations implied that neutrinos have mass, in tension with the standard model of particle physics.

The study of neutrino oscillations continues with efforts to pin down the neutrino masses and mixing parameters that determine the oscillating behavior. The main target, however, is no longer solar neutrinos. “The majority of the community, by a large margin, is focused on accelerator neutrinos,” says Michael Smy from the University of California, Irvine. The reason for this shift, he says, is that an accelerator experiment can explore higher-energy neutrinos and control the source-detector distance over which oscillations may occur. Researchers can also switch the accelerator on and off, which helps remove certain backgrounds.

A study of neutrinos from the Sun has measured the signal from the so-called CNO cycle, offering a direct measure of the elemental abundances in the Sun’s core.

Solar neutrinos are copiously produced by hydrogen fusion reactions in the Sun’s core. Therefore, they are the direct evidence that the Sun is powered by nuclear reactions. Measurements of solar neutrinos have provided information about the temperature and density of the solar interior, but uncertainties remain about the chemical ingredients. Now the Borexino Collaboration reports a new measurement of the neutrino flux produced by the so-called CNO hydrogen burning cycle in the Sun [1]. This cycle—which requires the presence of carbon ©, nitrogen (N), and oxygen (O)—produces neutrinos that carry enormous diagnostic power relating to the properties of the solar interior. By measuring these neutrinos, the collaboration provides a precious piece of information about the elemental makeup of the Sun, bringing us closer to resolving a controversy that has plagued solar physics for over 20 years [2].

Stars spend about 90% of their lifetimes fusing hydrogen into helium, producing two neutrinos in the process. The pp chain—or proton–proton chain—and CNO cycle are the two fundamental modes by which stellar fusion occurs. Whether a star is dominated by the pp chain or the CNO cycle depends on its core temperature, which is primarily determined by the mass of the star. In the Sun and similar low-mass stars, the pp chain generates almost all the nuclear energy; the CNO cycle is the main power source for more massive stars. The pp chain is a series of nuclear reactions that require no additional nuclei besides hydrogen as fuel. By contrast, the CNO cycle relies on the presence of C, N, and O nuclei as catalysts in the production of helium (Fig. 1). In the Sun, this catalytic process introduces a linear dependence between the amount of C, N, and O and the flux of CNO neutrinos. Thus, CNO neutrinos are a powerful tool for probing the chemical composition in the Sun’s core.

The U.S. Department of Energy (DOE) has today confirmed the achievement of “fusion ignition” at Lawrence Livermore National Laboratory (LLNL) – a major scientific breakthrough, many decades in the making, which could pave the way to near-limitless clean power.

On 5th December, a team at LLNL’s National Ignition Facility (NIF) conducted the first controlled experiment in history to reach this milestone, also known as scientific energy breakeven, meaning it produced more energy from fusion than the laser energy used to drive it. This first-of-its-kind feat will provide invaluable insights into the fusion energy process, which scientists have been attempting to develop for nearly a century.

Inside the target chamber of LLNL’s National Ignition Facility, 192 laser beams delivered more than 2 million joules of ultraviolet energy to a tiny fuel pellet to create the fusion ignition. These lasers heated the capsule to 100,000,000°C – more than six times hotter than the Sun’s core, and compressed it to more than 100 billion times the pressure of Earth’s atmosphere. Under these unimaginable forces, the capsule would have imploded on itself, forcing its hydrogen atoms to fuse and release energy.

For any issue please contact us at 👇🏻
[email protected] : https://www.facebook.com/ttienglish007
Instagram : https://www.instagram.com/top_10_information/
Twitter : https://twitter.com/tti_english.

# Ultra Hydrobhobic Material (Gentoo)
Gentoo is the next generation of corrosion-resistant and easy-cleaning coatings. With its combination of high performing abrasion resistance and very low sliding angle, Gentoo excels where other coatings have fallen short https://goo.gl/LgBgXL
https://goo.gl/vcfXEd.
https://goo.gl/n8yzDV
https://goo.gl/rGUikJ# Triiodide.
n chemistry, triiodide is usually referred to the triiodide ion, I−
3. This anion, one of the polyhalogen ions, is composed of three iodine atoms. It is formed by combining aqueous solutions of iodide salts and iodine.
https://en.wikipedia.org/wiki/Triiodide.
https://goo.gl/AVfLSk.
https://goo.gl/dFnZSu.
https://goo.gl/X7fgnL
https://goo.gl/t3nYZd.
https://goo.gl/xEJXeb# Hydrogel.
Hydrogel products constitute a group of polymeric materials, the hydrophilic structure of which renders them capable of holding large amounts of water in their three-dimensional networks. Extensive employment of these products in a number of industrial and environmental areas of application is considered to be of prime importance.
https://goo.gl/T85Nkj.
https://en.wikipedia.org/wiki/Gel.
https://goo.gl/SQj5zg.
https://goo.gl/gTmWe3
https://goo.gl/i99LTk.
https://goo.gl/BfVgKN# Nitinol.
Nitinol alloys exhibit two closely related and unique properties: shape memory effect (SME) and superelasticity (SE; also called pseudoelasticity, PE). Shape memory is the ability of nitinol to undergo deformation at one temperature, then recover its original, undeformed shape upon heating above its “transformation temperature”.
https://en.wikipedia.org/wiki/Nickel_titanium.
https://goo.gl/mtFu8S
https://goo.gl/kdUshM
https://goo.gl/ncXF3X
https://goo.gl/sbnvtY
https://goo.gl/Uc3pdX
https://goo.gl/V3DWEx# Gallium metal.
https://goo.gl/2jv7P1
https://goo.gl/B8KMqf.
https://goo.gl/1Lsk9n.
https://goo.gl/YPfRzH
https://goo.gl/6Td8Q4
https://goo.gl/va94iV# Aerogel.
https://goo.gl/Wq69zr.
https://goo.gl/6ag7zV
https://goo.gl/2LAJSy.
https://goo.gl/Z5BV5g.
https://goo.gl/hw8m81
https://goo.gl/hVqBz1# Magnetic Thinking Putty!
https://goo.gl/Pvos7a.
https://goo.gl/1Tg8Cg.
https://goo.gl/zTHbwJ
https://goo.gl/TSrQSN
https://goo.gl/W37Wyh.
https://goo.gl/4C1avx.
special Credits:
CrazyRussianHacker.
https://www.youtube.com/user/CrazyRussianHackerGrant

Thompson — “The King of Random“
https://www.youtube.com/user/010320108141-FerroFluid.
https://goo.gl/TpSZLc.
https://goo.gl/SF7qh9
https://goo.gl/65uTND
https://goo.gl/ze9GR4
https://goo.gl/Fe2Wdy.
https://goo.gl/pXQkd42-Liquid Nitrogen.
https://goo.gl/Xj4sEM
https://goo.gl/d5Go3j.
https://goo.gl/fBtdHC
https://goo.gl/xnuFNR
https://goo.gl/jmYgrj.
https://goo.gl/tQZZ4C
https://goo.gl/vHwdPE
3-Dry Ice.
https://goo.gl/7W3Cjh.
https://goo.gl/7QF8kB
https://goo.gl/uX8KdL
https://goo.gl/rmTpXs.
https://goo.gl/nvoXgf.
https://goo.gl/Mz2EBH
https://goo.gl/ndB7Rn.
https://goo.gl/ZCBxmE
https://goo.gl/4GnrsM
https://goo.gl/VQjNCX
https://goo.gl/LJXgoR
https://goo.gl/CyHL5E
https://goo.gl/reB3cN4-Black Fire Snake.
https://goo.gl/xNUJgz.
https://goo.gl/zSAjY2
https://goo.gl/eWCFp7
https://goo.gl/w7mafY
https://goo.gl/jYGWZT
https://goo.gl/LgUgqD
https://goo.gl/N24pV3
https://goo.gl/zeQaRn.
https://goo.gl/g3wpTX5-Magical Fire.
https://goo.gl/hdyMVL
https://goo.gl/mh1FUK
https://goo.gl/vJ9N8A
https://goo.gl/C1Emto.
https://goo.gl/pZvwvL6-Sodium Metal.
https://goo.gl/LLmqfe.
https://goo.gl/nQG2Vv.
https://goo.gl/K3KfGC
https://goo.gl/ooLwyP
https://goo.gl/Asxu3t.
https://goo.gl/G8cu2g.
https://goo.gl/CGBemZ
https://goo.gl/pgUi2Y7-Burning calories (Sugar)
https://goo.gl/ch9ihk.
https://goo.gl/MNRTnC
https://goo.gl/qeRQcW
https://goo.gl/fCaLZm.
https://goo.gl/tV7Xie.
https://goo.gl/2e3kjF
https://goo.gl/7WLYte.
https://goo.gl/Q4uirf.
8-Elephant Toothpaste.
https://goo.gl/zHTN2i.
https://goo.gl/GJm168
https://goo.gl/Tm71ej.
https://goo.gl/Hv6Ng3
https://goo.gl/vdbKbU
https://goo.gl/wB6P5Y
https://goo.gl/Ez4Gyg.
https://goo.gl/xkwyJL9-The Litracon.
https://goo.gl/gjR8oj.
https://goo.gl/8tn2vd.
https://goo.gl/viBNP2
https://goo.gl/wqxZMY
https://goo.gl/a3f9PD
https://goo.gl/yQvW4S10-The Neodymium.
https://goo.gl/D9RPnq.
https://goo.gl/3Vccem.
https://goo.gl/dvWgHk.
https://goo.gl/8yvA4d.
https://goo.gl/6HKRPj.
https://goo.gl/HsqgS4
https://goo.gl/s3NjZL
https://goo.gl/Jia5hs.
https://goo.gl/ALVFzB
https://goo.gl/kzjVCg.
https://goo.gl/3LHzd5
https://goo.gl/KnrTg3
https://goo.gl/uQWwg8

#experiment #material #science

Hunting for lightweight dark matter particles requires detectors with much lower signal thresholds than traditional experiments. This requirement has prompted novel detection techniques, including probing the faint interactions that occur between sub-MeV particles and electrons. In a 180-hour-long experiment, Yonit Hochberg of the Hebrew University of Jerusalem and her colleagues demonstrate a device that distinguishes hypothetical sub-MeV dark matter from background noise with record sensitivity [1]. Their experiment places the strongest constraints yet on interactions between lightweight dark matter and regular matter.

Hochberg and her colleagues etched an array of nanowires in a 7-nm-thick tungsten-silicide film to produce a superconducting nanowire single-photon detector, a sensor that is sensitive to extremely small energy inputs. When energy above some threshold is deposited on a superconducting nanowire, the wire briefly becomes a regular conductor, resulting in a voltage pulse.

The team circulated a fixed current through their device and sealed it in a light-tight box for 180 hours. They counted four voltage pulses, each corresponding to a deposited energy of at least 0.73 eV. Absent any other detectable energy source, these dark counts could be attributed to cosmic-ray-generated muons or high-energy particles excited by radioactive decay.

It is working with CERN to push the boundaries of clean aerospace.

Airbus and CERN, the European Laboratory for Particle Physics, have joined forces to launch Airbus UpNext, a project whose aim is to evaluate how superconductivity can contribute to the decarbonization of future aircraft systems, according to a press release by the aircraft manufacturer published last week.

It consists of a Super-Conductor for Aviation with Low Emissions (SCALE) demonstrator that aims to promote the adaptation and adoption of superconducting technologies in airborne electrical distribution systems.

A team of researchers in China have developed a high-conductivity material that could greatly reduce contact resistance and Schottky barrier height within critical parts of electronic and optoelectronic microchips, paving the way for computer and digital imaging components that consume less power relative to their performance than existing chipsets.

The material, (MoS2) is so thin that it falls into a classification of two-dimensional. That is, it is grown in sheets extending in two directions, X and Y, but virtually immeasurable on a Z axis because the material is often only a single molecule or atom in height.

The team, led by Professor Dong Li and Professor Anlian Pan, College of Materials Science and Engineering at Hunan University, published their findings in Nano Research.

For decades, astronomers and physicists have been trying to solve one of the deepest mysteries about the cosmos: An estimated 85% of its mass is missing. Numerous astronomical observations indicate that the visible mass in the universe is not nearly enough to hold galaxies together and account for how matter clumps. Some kind of invisible, unknown type of subatomic particle, dubbed dark matter, must provide the extra gravitational glue.

In underground laboratories and at , scientists have been searching for this dark matter with no success for more than 30 years. Researchers at NIST are now exploring new ways to search for the invisible particles. In one study, a prototype for a much larger experiment, researchers have used state-of-the-art superconducting detectors to hunt for dark matter.

The study has already placed new limits on the possible mass of one type of hypothesized dark matter. Another NIST team has proposed that trapped electrons, commonly used to measure properties of ordinary particles, could also serve as highly sensitive detectors of hypothetical dark matter particles if they carry charge.

The Large Hadron Collider Beauty (LHCb) experiment at CERN is the world’s leading experiment in quark flavor physics with a broad particle physics program. Its data from Runs 1 and 2 of the Large Hadron Collider (LHC) has so far been used for over 600 scientific publications, including a number of significant discoveries.

While all scientific results from the LHCb collaboration are already publicly available through open access papers, the data used by the researchers to produce these results is now accessible to anyone in the world through the CERN open data portal. The data release is made in the context of CERN’s Open Science Policy, reflecting the values of transparency and international collaboration enshrined in the CERN Convention for more than 60 years.

“The data collected at LHCb is a unique legacy to humanity, especially since no other experiment covers the region LHCb looks at,” says Sebastian Neubert, leader of the LHCb open data project. “It has been obtained through a huge international collaborative effort, which was funded by the public. Therefore the data belongs to society.”