Toggle light / dark theme

Quantum objects make up classical objects. But the two behave very differently. The collapse of the wave-function prevents classical objects from doing the weird things quantum objects do; like quantum entanglement or quantum tunneling. Is the universe as a whole a quantum object or a classical one? Artyom Yurov and Valerian Yurov argue the universe is a quantum object, interacting with other quantum universes, with surprising consequences for our theories about dark matter and dark energy.

1. The Quantum Wonderland

If scientific theories were like human beings, the anthropomorphic quantum mechanics would be a miracle worker, a brilliant wizard of engineering, capable of fabricating almost anything, be it a laser or a complex integrated circuit. At the same token, this wizard of science would probably look and act crazier than a March Hair and Mad Hatter combined. The fact of the matter is, the principles of quantum mechanics are so bizarre and unintuitive, they seem to be utterly incompatible with our inherent common sense. For example, in the quantum realm, a particle does not journey from point A to point B along some predetermined path. Instead, it appears to traverse all possible trajectories between these points – every single one! In this strange realm the items might vanish right in front of an impenetrably high barrier – only to materialize on the other side (this is called quantum tunneling).

Physicists believe most of the matter in the Universe is made up of an invisible substance that we only know about by its indirect effects on the stars and galaxies we can see.

We’re not crazy! Without this “dark matter”, the Universe as we see it would make no sense.

But the nature of dark matter is a longstanding puzzle. However, a new study by Alfred Amruth at the University of Hong Kong and colleagues, published in Nature Astronomy, uses the gravitational bending of light to bring us a step closer to understanding.

The experimental realization of a recently proposed technique points to new possibilities for imaging molecules using x rays.

Hanbury Brown and Twiss (HBT) interferometry [1] is a versatile technique widely used in various fields of physics, such as astronomy, quantum optics, and particle physics. By measuring the correlation of photon arrival times on two detectors as a function of the photons’ spatial separation, HBT interferometry enables the determination of the size and spatial distribution of a light source. Recently, a novel x-ray imaging technique based on the HBT method was proposed to image the spatial arrangement of heavy elements in a crystal or molecule by inducing those elements to fluoresce at x-ray wavelengths [2].

New computer simulations show that wave-particle interactions endow thin plasmas with an effective viscosity that regulates their turbulent motions and heating.

Most of the regular matter in the Universe is plasma, an ebullient state characterized by charged particles interacting collectively with electromagnetic fields. When individual particles collide on scales much shorter than those of bulk plasma motions, the latter are described well by a 3D fluid theory: magnetohydrodynamics. That condition prevails in the interiors of stars and planets and in protoplanetary accretion disks. But many hot, low-density astrophysical plasma flows are only weakly collisional. Accounting for stellar winds, accretion around black holes, and the motions of the plasma that pervades intergalactic space requires a statistical kinetic description of the particle positions and velocities in a 6D space. Numerical simulations by Lev Arzamasskiy of the Institute of Advanced Study in Princeton, New Jersey, and his colleagues [1] shed new light on magnetized kinetic turbulence in such plasmas.

Emerging AI applications, like chatbots that generate natural human language, demand denser, more powerful computer chips. But semiconductor chips are traditionally made with bulk materials, which are boxy 3D structures, so stacking multiple layers of transistors to create denser integrations is very difficult.

However, semiconductor transistors made from ultrathin 2D materials, each only about three atoms in thickness, could be stacked up to create more powerful chips. To this end, MIT researchers have now demonstrated a that can effectively and efficiently “grow” layers of 2D transition metal dichalcogenide (TMD) materials directly on top of a fully fabricated silicon chip to enable denser integrations.

Growing 2D materials directly onto a silicon CMOS wafer has posed a major challenge because the process usually requires temperatures of about 600 degrees Celsius, while silicon transistors and circuits could break down when heated above 400 degrees. Now, the interdisciplinary team of MIT researchers has developed a low-temperature growth process that does not damage the chip. The technology allows 2D semiconductor transistors to be directly integrated on top of standard silicon circuits.

For one, classical physics can predict, with simple mathematics, how an object will move and where it will be at any given point in time and space. How objects interact with each other and their environments follow laws we first encounter in high school science textbooks.

What happens in minuscule realms isn’t so easily explained. At the level of atoms and their parts, measuring position and momentum simultaneously yields only probability. Knowing a particle’s exact state is a zero-sum game in which classical notions of determinism don’t apply: the more certain we are about its momentum, the less certain we are about where it will be.

We’re not exactly sure what it will be, either. That particle could be both an electron and a wave of energy, existing in multiple states at once. When we observe it, we force a quantum choice, and the particle collapses from its state of superposition into one of its possible forms.

A newly discovered phenomenon dubbed “collectively induced transparency” (CIT) causes groups of atoms to abruptly stop reflecting light at specific frequencies.

CIT was discovered by confining ytterbium atoms inside an —essentially, a tiny box for light—and blasting them with a laser. Although the laser’s light will bounce off the atoms up to a point, as the frequency of the light is adjusted, a transparency window appears in which the light simply passes through the cavity unimpeded.

“We never knew this transparency window existed,” says Caltech’s Andrei Faraon (BS ‘04), William L. Valentine Professor of Applied Physics and Electrical Engineering, and co-corresponding author of a paper on the discovery that was published on April 26 in the journal Nature. “Our research has primarily become a journey to find out why.”

😗


Physicists measure and control electron release from metals in the attosecond range.

By superimposing two laser fields of different strengths and frequency, the electron emission of metals can be measured and controlled precisely to a few attoseconds. Physicists from Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), the University of Rostock and the University of Konstanz have shown that this is the case. The findings could lead to new quantum-mechanical insights and enable electronic circuits that are a million times faster than today.

Light is capable of releasing electrons from metal surfaces. This observation was already made in the first half of the 19th century by Alexandre Edmond Becquerel and later confirmed in various experiments, among others by Heinrich Hertz and Wilhelm Hallwachs. Since the photoelectric effect could not be reconciled with the light wave theory, Albert Einstein came to the conclusion that light must consist not only of waves, but also of particles. He laid the foundation for quantum mechanics.

A study reflects on how these plastic particles can increase the risk of neuroinflammation and neurodegeneration.

We have known for a while that microplastics are in our bloodstreams, making their way into our bodies through daily consumables like milk and meat. The foreign presence of micro and nano-plastic particles (MNPs) in our bodies is dangerous for obvious reasons, and they can potentially reach remote locations and penetrate living cells.

In a scary confirmation of this potentiality, a new study has found that polystyrene, a widely-used plastic found in food packaging, could be detected in the brain just two hours after ingestion.