Menu

Blog

Archive for the ‘particle physics’ category: Page 129

Jan 29, 2023

Terahertz emission from a bounded plasma

Posted by in categories: information science, particle physics, space

The dynamics of electrons submitted to voltage pulses in a thin semiconductor layer is investigated using a kinetic approach based on the solution of the electron Boltzmann equation using particle-in-cell/Monte Carlo collision simulations. The results showed that due to the fairly high plasma density, oscillations emerge from a highly nonlinear interaction between the space-charge field and the electrons. The voltage pulse excites electron waves with dynamics and phase-space trajectories that depend on the doping level. High-amplitude oscillations take place during the relaxation phase and are subsequently damped over time-scales in the range 100 400 fs and decrease with the doping level. The power spectra of these oscillations show a high-energy band and a low-energy peak that were attributed to bounded plasma resonances and to a sheath effect. The high-energy THz domain reduces to sharp and well-defined peaks for the high doping case. The radiative power that would be emitted by the thin semiconductor layer strongly depends on the competition between damping and radiative decay in the electron dynamics. Simulations showed that higher doping level favor enhanced magnitude and much slower damping for the high-frequency current, which would strongly enhance the emitted level of THz radiation.

Jan 29, 2023

Kinetic modeling of laser absorption in foams

Posted by in category: particle physics

Laser interaction with foam targets is of interest for applications in the inertial confinement fusion studies and for the creation of secondary sources of energetic particles and radiation. Numerical modeling of such an interaction presents difficulties related to the sub-wavelength dimension of solid elements and high density contrast. Here, we present an analysis of laser interaction with thin wires based on the Mie theory, which demonstrates an enhanced laser absorption due to plasma resonance, and confirm this conclusion with detailed kinetic simulations. Numerical simulations also provide the characteristic time of the solid element transformation in a plasma and the energy partition between electrons and ions.

Jan 28, 2023

On the existence of a holographic description of the LHC quark–gluon plasmas

Posted by in categories: mathematics, particle physics

Year 2017 face_with_colon_three


A basic question [1] in the study of the gauge-gravity duality is this: which field theories have a gravity dual? In the case of applications to actual strongly coupled systems such as the Quark–Gluon Plasma [2], [3], [4], [5], [6], this question becomes: does every realistic strongly coupled system have such a dual? To settle this, one needs to examine the most extreme cases. The most extreme strongly-coupled systems currently accessible to experiment are probably (see below) the plasmas produced by collisions of heavy ions at the LHC [7], [8] ; so one needs to consider whether holography works in this case.

In [9] we adduced evidence suggesting that it does not. The problem is a very fundamental one: it appears that the purported gravity dual in some cases does not exist when one attempts to interpret it (as one ultimately must [10]) as a string-theoretic system.

Continue reading “On the existence of a holographic description of the LHC quark–gluon plasmas” »

Jan 28, 2023

The Fifth Dimension’s Portal Has Been Found, According to Scientists — archeology and animals Blog

Posted by in categories: cosmology, particle physics

In a new study, scientists say that a particle that links to a fifth dimension can explain dark matter.

The “warped extra dimension” (WED) is a trademark of a popular physics model that was first introduced in 1999. This research, which was published in The European Physical Journal C, is the first to use the theory to explain the long-standing dark matter problem in particle physics. Gravity portals' could morph dark matter into ordinary matter, astrophysicists propose | Live Science

The idea of dark matter, which makes up most of the matter in the universe, is the basis for what we know about how the universe works. Dark matter is like a pinch-hitter that helps scientists figure out how gravity works. Without a “x factor” of dark matter, many things would dissolve or fall apart. Even so, dark matter doesn’t change the particles we can see and “feel,” so it must have other special qualities as well.

Jan 27, 2023

Scientists Make Star Trek Technology Real With A Working Tractor Beam

Posted by in categories: nanotechnology, particle physics, tractor beam

Scientists how now developed a mini tractor beam that can pull atoms and nanoparticles. Scientists have built a real working tractor beam, albeit at a very small scale. The device, which attracts one object to another from a distance, originates in fiction. The term was coined by E. E. Smith who mentioned the technology in his 1931 novel Spacehounds of IPC, and since the 1990s, researchers have worked to make it a reality.

Jan 27, 2023

Particle accelerator experiment creates an exotic, highly unstable particle and measures its mass

Posted by in categories: particle physics, space

The standard model of particle physics tells us that most particles we observe are made up of combinations of just six types of fundamental entities called quarks. However, there are still many mysteries, one of which is an exotic, but very short-lived, Lambda resonance known as Λ(1405). For a long time, it was thought to be a particular excited state of three quarks—up, down, and strange—and understanding its internal structure may help us learn more about the extremely dense matter that exists in neutron stars.

Investigators from Osaka University were part of a team that has now succeeded in synthesizing Λ(1405) for the first time by combining a K- meson and a proton and determining its complex mass (mass and width). The K meson is a negatively charged particle containing a strange and an up antiquark. The much more familiar proton that makes up the matter that we are used to has two up quarks and a down quark. The researchers showed that Λ(1405) is best thought of as a temporary bound state of the K- meson and the proton, as opposed to a three-quark .

In their study published recently in Physics Letters B, the group describes the experiment they carried out at the J-PARC accelerator. K mesons were shot at a deuterium target, each of which had one proton and one neutron. In a successful reaction, a K meson kicked out the neutron, and then merged with the proton to produce the desired Λ(1405).

Jan 26, 2023

Scientists observe ‘quasiparticles’ in classical systems for the first time

Posted by in categories: particle physics, quantum physics

Starting with the emergence of quantum mechanics, the world of physics has been divided between classical and quantum physics. Classical physics deals with the motions of objects we typically see every day in the macroscopic world, while quantum physics explains the exotic behaviors of elementary particles in the microscopic world.

Many solids or liquids are composed of particles interacting with one another at close distances, which sometimes results in the rise of “quasiparticles.” Quasiparticles are long-lived excitations that behave effectively as weakly interacting particles. The idea of quasiparticles was introduced by the Soviet physicist Lev Landau in 1941, and ever since has been highly fruitful in quantum matter research. Some examples of quasiparticles include Bogoliubov quasiparticles (i.e. “broken Cooper pairs”) in superconductivity, excitons in semiconductors, and phonons.

Continue reading “Scientists observe ‘quasiparticles’ in classical systems for the first time” »

Jan 26, 2023

Achieving nanoscale precision using neuromorphic localization microscopy

Posted by in categories: nanotechnology, particle physics

A neuromorphic camera can localize single fluorescent particles to below 20 nm resolution and evaluate the diffusion trajectory with millisecond temporal precision.

Jan 26, 2023

A new approach to solving the mystery of dark energy

Posted by in categories: cosmology, particle physics, quantum physics

What is behind dark energy—and what connects it to the cosmological constant introduced by Albert Einstein? Two physicists from the University of Luxembourg point the way to answering these open questions of physics.

The universe has a number of bizarre properties that are difficult to understand with everyday experience. For example, the matter we know, consisting of atoms and molecules and other particles, apparently makes up only a small part of the energy density of the universe. The largest contribution, more than two-thirds, comes from “”—a hypothetical form of energy whose background physicists are still puzzling over.

Moreover, the universe is not only expanding steadily, but also doing so at an ever-faster pace. Both characteristics seem to be connected, because dark energy is also considered a driver of accelerated expansion. Moreover, it could reunite two powerful physical schools of thought: and the developed by Albert Einstein. But there is a catch: calculations and observations have so far been far from matching. Now two researchers from Luxembourg have shown a way to solve this 100-year-old riddle in a paper published by Physical Review Letters.

Jan 25, 2023

Using Artificial Intelligence To Tame Quantum Systems

Posted by in categories: particle physics, quantum physics, robotics/AI

Controlling the trajectory of a basketball is relatively straightforward, as it only requires the application of mechanical force and human skill. However, controlling the movement of quantum systems like atoms and electrons poses a much greater challenge. These tiny particles are prone to perturbations that can cause them to deviate from their intended path in unexpected ways. Additionally, movement within the system degrades, known as damping, and noise from environmental factors like temperature further disrupts its trajectory.

To counteract the effects of damping and noise, researchers from Okinawa Institute of Science and Technology (OIST) in Japan have found a way to use artificial intelligence to discover and apply stabilizing pulses of light or voltage with fluctuating intensity to quantum systems. This method was able to successfully cool a micro-mechanical object to its quantum state and control its motion in an optimized way. The research was recently published in the journal Physical Review Research.