Toggle light / dark theme

The full collection of top quark mass measurements by the CMS experiment! 🗝

What’s the best way to pin down the exact mass of this enigmatic particle? Discover the diverse strategies perfected by CMS over the last decade:


When it comes to top quark mass measurements, the CMS collaborati on has the largest and most complete collection of publication-quality results, cov ering a wide range of methods and approaches. In a recent review paper, an overview is given of all top quark mass measurements published by CMS so far. In the quest to pin down the exact mass of this enigmatic particle, different methods were developed and perfected over the last decade.

Southwest Research Institute has invested in research to enhance the capabilities of spacecraft instruments. Consequently, they have developed more effective conversion surfaces for the detection and analysis of low-energy particles in outer space.

Led by Dr. Jianliang Lin of Mechanical Engineering and Dr. Justyna SokóƂ of the Space Science Division, the project could potentially change our understanding of space physics and exploration.

🔗 Top quark and top antiquark entanglement 🔗

The CMS experiment has just reported the observation and confirms the existence of #entanglement between the top #quark and its #Antiparticle beyond reasonable doubt.


The CMS experiment has just reported the observation of quantum entanglement between a top quark and a top antiquark, simultaneously produced at the LHC.

In quantum mechanics, a system is said to be entangled if its quantum state cannot be described as a simple superposition of the states of its constituents. If two particles are entangled, we cannot describe one of them independently of the other, even if the particles are separated by a very large distance. When we measure the quantum state of one of the two particles, we instantly know the state of the other. The information is not transmitted via any physical channel; it is encoded in the correlated two-particle system.

A research team, led by Professor Joonki Suh in the Department of Materials Science and Engineering and the Graduate School of Semiconductor Materials and Devices Engineering at UNIST, has made a significant breakthrough in thin film deposition technology. By employing an innovative atomic layer deposition (ALD) process, Professor Seo successfully achieved regular arrangement of tellurium (Te) atoms at low temperatures as low as 50 degrees Celsius.

The ALD method is a cutting-edge thin film process that enables precise stacking of semiconductor materials at the atomic layer level on three-dimensional structures—even at low process temperatures. However, traditional application to next-generation semiconductors requires high processing temperatures above 250 degrees Celsius and additional heat treatment exceeding 450 degrees Celsius.

In this research, the UNIST team applied ALD to monoelemental van der Waals tellurium—a material under extensive investigation for its potential applications in and thermoelectric materials.

Related: Scientists find ‘ghost particles’ spewing from our Milky Way galaxy in landmark discovery (video)

“Because like-charged objects in a vacuum are expected to repel regardless of whether the sign of the charge they carry is positive or negative, the expectation is that like-charged particles in solution must also monotonically repel,” the researchers wrote in the paper.

To test the assumption, the researchers placed charged silica microparticles (measuring just 0.0002 inch, or 5 micrometers, wide — a fraction of the width of a human hair) inside water or one of two types of alcohol. By tracking the charges with a microscope, the team established that, inside water, the positively charged particles pushed themselves away from each other in accordance with Coulomb’s law.

The heliosphere—made of solar wind, solar transients, and the interplanetary magnetic field—acts as our solar system’s personal shield, protecting the planets from galactic cosmic rays. These extremely energetic particles accelerated outwards from events like supernovas and would cause a huge amount of damage if the heliosphere did not mostly absorb them.