Toggle light / dark theme

Ghost Particles on Patrol: Antimatter Detector Revolutionizes Nuclear Reactor Monitoring

Researchers have developed a new detector that analyzes antineutrinos emitted by nuclear reactors to monitor their activities from great distances.

This technology, which utilizes the phenomena of Cherenkov radiation, could revolutionize how we ensure reactors are not producing material for nuclear weapons, despite challenges from other environmental antineutrinos.

Nuclear Fission and Antimatter Monitoring.

US nuclear fusion lab hits 200,000 plasma ‘shots’ in a milestone

A cornerstone of the US fusion research program, the DIII-D National Fusion Facility, has accomplished a major achievement. The nuclear fusion facility has completed its 200,000th experimental cycle.

“While completing 200,000 shots is impressive in its own right, this achievement is far more than a mere number,” said Dr Richard Buttery, Director of the DIII-D National Fusion Facility.

Nuclear fusion has long been hailed as the “holy grail” of clean energy. It is the process of nuclear fusion itself that powers the sun and stars. Unlike nuclear fission, which splits atoms and generates radioactive waste, fusion involves combining lighter atoms to form heavier ones.

NASA sends a shutdown signal to Voyager 2: It has received it at 2 billion km

Considering the future: What Voyager 2 has in store

According to Miller (2024), even though this instrument has been deactivated, engineers anticipate that Voyager 2 will have at least one operable instrument for exploration through the 2030s. The spacecraft continues to operate and transmit data. NASA is also hoping that the spacecraft continues to provide valid information about the interstellar medium too.

The seamless continuation of activities was made possible by the confirmation that the instrument was operating normally. In 2018, it was confirmed that Voyager 2 had crossed the heliosphere’s border and entered interstellar space thanks in large part to the plasma science instrument. Significant changes in atoms, particles, and magnetic fields that are detectable by the instruments of the Voyager probes define this barrier.

Quantum entanglement speed is measured for the first time, and it’s too fast to comprehend

These scientists aren’t focused on the existence of quantum entanglement, but are keen on uncovering how it begins — how exactly do two particles become quantum entangled?

Using advanced computer simulations, they’ve managed to peek into processes that happen on attosecond timescales — a billionth of a billionth of a second.

Quantum entanglement is a strange and fascinating phenomenon where two particles become so interconnected that they share a single state.

Researchers At Large Hadron Collider Are Confident To Make Contact With Parallel Universe In Days

T he astoundingly complex LHC “atom smasher” at the CERN center in Geneva, Switzerland, are fired up to its maximum energy levels ever in an endeavor to identify — or perhaps generate — tiny black holes.

If successful a very new universe is going to be exposed – modifying completely not only the physics books but the philosophy books too.

How fast is quantum entanglement? Scientists investigate it at the attosecond scale

Quantum theory describes events that take place on extremely short time scales. In the past, such events were regarded as ‘momentary’ or ‘instantaneous’: An electron orbits the nucleus of an atom—in the next moment it is suddenly ripped out by a flash of light. Two particles collide—in the next moment they are suddenly ‘quantum entangled.’

A Route Toward the Island of Stability

Scientists have synthesized an isotope of the superheavy element livermorium using a novel fusion reaction. The result paves the way for the discovery of new chemical elements.

How and where in the Universe are the chemical elements created? How can we explain their relative abundance? What is the maximum number of protons and neutrons that the nuclear force can bind in a single nucleus? Nuclear physicists and chemists expect to find answers to such questions by creating and studying new elements. But as elements get more and more massive, they become harder and harder to synthesize. The heaviest elements discovered so far were created by bombarding high-atomic-number (high-Z) actinide targets with beams of calcium-48 (48 Ca). This isotope is particularly suited to such experiments because of its peculiar nuclear configuration, in which the number of neutrons and protons are both “magic numbers.” Yet this approach could not produce elements beyond oganesson (proton number, Z = 118).