Toggle light / dark theme

Scientists calculate predictions for meson measurements

Nuclear physics theorists at the U.S. Department of Energy’s (DOE) Brookhaven National Laboratory have demonstrated that complex calculations run on supercomputers can accurately predict the distribution of electric charges in mesons, particles made of a quark and an antiquark. Scientists are keen to learn more about mesons—and the whole class of particles made of quarks, collectively known as hadrons—in high-energy experiments at the future Electron-Ion Collider (EIC), a particle collider being built at Brookhaven Lab.

Can unknown physics be seen in interactions between Higgs bosons?

Since the launch of the Large Hadron Collider, there has been ongoing research there into Higgs bosons and a search for traces of physics beyond the existing model of elementary particles. Scientists working at the ATLAS detector have combined both goals: with the latest analysis it has been possible to expand our knowledge of the interactions of Higgs bosons with each other, and stronger constraints on the phenomena of “new physics” have been found.

Breaking Physics: Scientists Reveal “Impossible” State of Matter That’s Both Solid and Superfluid

In a breakthrough, scientists confirmed superfluid properties in supersolids by observing quantized vortices. Using precision techniques, the team stirred a rotating supersolid, revealing unique vortex dynamics and offering new insights into the coexistence of solid and fluid characteristics. This discovery paves the way for studying exotic quantum matter and has implications for astrophysical phenomena.

Supersolids: A Quantum Paradox

Matter that behaves like both a solid and a superfluid at the same time might sound impossible. But more than 50 years ago, physicists predicted that quantum mechanics could allow such a state. In this unique state, collections of particles exhibit properties that seem contradictory. Francesca Ferlaino from the Department of Experimental Physics at the University of Innsbruck and the Institute of Quantum Optics and Quantum Information (IQOQI) at the Austrian Academy of Sciences explains, “It is a bit like Schrödinger’s cat, which is both alive and dead, a supersolid is both rigid and liquid.”

Axion clouds around neutron stars could reveal dark matter origins

Hypothetical particles called axions could form dense clouds around neutron stars – and if they do, they will give off signals that radio telescopes can detect, say researchers in the Netherlands, the UK and the US. Since axions are a possible candidate for the mysterious substance known as dark matter, this finding could bring us closer to understanding it.

Around 85% of the universe’s mass consists of matter that appears “dark” to us. We can observe its gravitational effect on structures such as galaxies, but we cannot observe it directly. This is because dark matter hardly interacts with anything as far as we know, making it very difficult to detect. So far, searches for dark matter on Earth and in space have found no evidence for any of the various dark matter candidates.

\r \r

Achieving the “Impossible”: Nuclear Physicists Are Closer Than Ever to the Elusive Double Magic Nuclei

Advancements in nuclear physics may soon enable the creation of stable, superheavy nuclei, paving the way for new materials and insights into atomic stability.

A team of scientists has made significant advancements in the quest to create new, long-lasting superheavy nuclei. These double magic nuclei, which have a precise number of protons and neutrons that form a highly stable configuration, are exceptionally resistant to decay. Their research could deepen our understanding of the forces that bind atoms and pave the way for the development of new materials with unique properties. This work brings us a step closer to the so-called “Island of Stability,” a theoretical region in the nuclei chart where it’s believed some nuclei could exist far longer than those created so far.

The study, led by Professor Feng-Shou Zhang, has predicted promising reactions between different elements that could be used in experiments to create double magic nuclei. One key discovery involves a reaction between a special type of radioactive calcium isotope and a plutonium target, which could produce the predicted double magic nuclei 298 Fl. Another potential double magic nuclei, 304 120, could be created by combining vanadium and berkelium, although this reaction is currently less likely to succeed.

Lightning strikes kick off a game of electron pinball in space

When lightning strikes, the electrons come pouring down.

In a new study, researchers at CU Boulder led by an undergraduate student have discovered a new link between weather on Earth and weather in space. The group used satellite data to show that lightning storms on our planet can knock especially high-energy, or “extra-hot,” electrons out of the inner radiation belt—a region of space filled with charged particles that surrounds Earth like an inner tube.

The team’s results could help satellites and even astronauts avoid dangerous radiation in space. This is one kind of downpour you don’t want to get caught in, said lead author Max Feinland.

Quantum Entanglement Breakthrough at LHC: Discover the Details!

Researchers at the Large Hadron Collider (LHC), the world’s largest particle accelerator, have recently made a groundbreaking advancement in exploring the laws of nature. They have observed the phenomenon of quantum entanglement between top quarks, the heaviest elementary particles, at unprecedented energy levels. This breakthrough paves the way for new possibilities in particle physics and could unveil new aspects of the fundamental forces that govern the universe.

Quantum Entanglement: A Counterintuitive Phenomenon

Quantum entanglement is one of the most enigmatic phenomena in quantum mechanics. It occurs when two or more particles become interconnected in such a way that the state of one particle instantly influences another, regardless of the distance separating them. This defies our everyday intuition and challenges some classical physics concepts, like causality.

The University of Alabama in Huntsville

Two researchers at The University of Alabama in Huntsville (UAH) have published a paper that demonstrates for the first time that a subluminal warp drive is possible within the bounds of known physics without the need to employ exotic unknown forms of matter or energy, while also advancing our understanding of gravity. UAH alumnus Dr. Jared Fuchs led a team of physicists that produced the paper, supported by Dr. Christopher Helmerich, also an alumnus of UAH, a part of the University of Alabama System, both working in conjunction with the New York-based Applied Propulsion Laboratory of Applied Physics (APL).

When Mexican physicist Miguel Alcubierre first proposed his theoretical warp drive in 1994, the concept required a bubble of ‘negative energy density’ around an object to create an imbalance in space-time, generating motion without movement of the craft, thus avoiding violations of the speed-of-light limit. But the Star Trek dream comes with a catch: it would have to be powered by either exotic particles that haven’t yet been discovered, or the mysterious dark energy thought to drive the expansion of the universe, currently viewed by most physicists as not remotely achievable.

Fuch’s team’s Constant-Velocity Subluminal Warp Drive, however, offers a new means of propulsion that allows it to operate at constant subluminal speeds, while still conforming to Einstein’s theory of general relativity, with no need for ‘unphysical’ forms of matter required by previous designs.