Toggle light / dark theme

Physicists have delved deeper into the enigmatic world of quantum entanglement and top quarks, bringing a new level of understanding to a phenomenon that even Albert Einstein found perplexing.

This incredible feat has the potential to revolutionize our understanding of the quantum realm and its far-reaching implications.

The experiment, conducted by a team of researchers led by University of Rochester physics professor Regina Demina at the European Center for Nuclear Research (CERN), has yielded a significant result.

Most distant spacecraft, #Voyager1, is now returning data from all four science instruments for the first time following a technical issue last November.


NASA’s Voyager 1 spacecraft is conducting normal science operations for the first time following a technical issue that arose in November 2023.

The team partially resolved the issue in April when they prompted the spacecraft to begin returning engineering data, which includes information about the health and status of the spacecraft. On May 19, the mission team executed the second step of that repair process and beamed a command to the spacecraft to begin returning science data. Two of the four science instruments returned to their normal operating modes immediately. Two other instruments required some additional work, but now, all four are returning usable science data.

The four instruments study plasma waves, magnetic fields, and particles. Voyager 1 and Voyager 2 are the only spacecraft to directly sample interstellar space, which is the region outside the heliosphere — the protective bubble of magnetic fields and solar wind created by the Sun.

The study is based on several intriguing coincidences. First, observations show that there is about the same amount of ordinary and dark matter, which exceeds baryonic by about five times. And secondly, neutrons and protons have almost the same mass, which allows them to form stable atoms — this is a random but stable property of the quantum world, because otherwise our universe would not be home to any of the atoms that make up stars, planets and ourselves.

In fact, the theory suggests that there may be a parallel universe like ours in which neutrons and protons do not have such convenient symmetry in mass. In this world, there is a “soup” of subatomic particles that interact little, which explains why dark matter does not seem to clump together.

It is important to note that this is just one more of many hypotheses that try to explain the mystery of dark matter – an annoying and lingering unknown in our understanding of the universe.

Scientists may be one step closer to unraveling one of the universe’s greatest mysteries. Their recent calculations suggest that neutron stars could play a crucial role in shedding light on the mysterious dark matter.

In a paper published in The Journal of Cosmology and Astroparticle Physics, physicists from the ARC Centre of Excellence for Dark Matter Particle Physics, led by the University of Melbourne, calculated that energy transferred when dark matter particles collide and annihilate inside cold dead neutron stars can heat the stars up very quickly.

It was previously thought that this energy transfer could take a very long time, in some cases, longer than the age of the universe itself, rendering this heating irrelevant.

Is dark matter primordial black holes? If so, could we find them using Apollo-era technology on the moon?
A new paper suggests the answer may be yes to both. I interviewed David Kaiser, one of the paper’s co-authors, former student of inflationary cosmology pioneer Alan Guth, and now Professor of Physics and Professor of the History of Science at MIT.
For the preprint of the full paper:
https://arxiv.org/pdf/2310.16877
and other press about the paper.
https://www.lrb.co.uk/the-paper/v46/n
https://news.mit.edu/2024/exotic-blac
And some other related papers:
https://journals.aps.org/prl/abstract
https://arxiv.org/abs/2303.02168
https://arxiv.org/abs/2312.17217
a timeline is below.
00:00 introduction.
00:57 primordial black holes.
3:05 particle dark matter and modified gravity.
6:33 LIGO and EHT
11:03 window of opportunity.
15:16 observaitonal signatures.
20:30 Apollo era tech.
25:19 Star Wars.
25:54 the future.

Have you ever wondered what happens when thousands of particles of light merge into a single entity? This phenomenon, known as a “super photon,” has fascinated physicists for years.

Now, researchers have made an intriguing discovery that broadens our understanding of this exotic quantum state.

Dr. Julian Schmitt and his colleagues from the Institute of Applied Physics at the University of Bonn have shown that photon Bose-Einstein condensates, also known as quantum gases, obey a fundamental theorem of physics.

One of the main goals of the LHC experiments is to look for signs of new particles, which could explain many of the unsolved mysteries in physics. Often, searches for new physics are designed to look for one specific type of new particle at a time, using theoretical predictions as a guide. But what about searching for unpredicted—and unexpected—new particles?