Scientists in Australia are making some astonishing claims about a new nuclear reactor technology. Startup HB11, which spun out of the University of New South Wales, has applied for and received patents in the U.S., Japan, and China so far. The company’s technology uses lasers to trigger a nuclear fusion reaction in hydrogen and boron—purportedly with no radioactive fuel required. The secret is a cutting-edge laser and, well, an element of luck.
The laser doesn’t heat the materials. Instead, it speeds up the hydrogen to the point where it (hopefully) collides with the boron to begin a reaction.
The process even skips the “need for a heat exchanger or steam turbine generator” and can feed an electrical flow “almost directly into an existing power grid,” according to the company’s statement.
No nuclear waste, no steam, zero chance of a nuclear meltdown. It almost sounds too good to be true — but the startup still has a lot to prove. McKenzie admitted himself he doesn’t know if or when the startup’s idea could be turned into a commercial reality.
“I don’t want to be a laughing stock by promising we can deliver something in 10 years, and then not getting there,” he told New Atlas.
“We are sidestepping all of the scientific challenges that have held fusion energy back for more than half a century,” says the director of an Australian company that claims its hydrogen-boron fusion technology is already working a billion times better than expected.
HB11 Energy is a spin-out company that originated at the University of New South Wales, and it announced today a swag of patents through Japan, China and the USA protecting its unique approach to fusion energy generation.
Fusion, of course, is the long-awaited clean, safe theoretical solution to humanity’s energy needs. It’s how the Sun itself makes the vast amounts of energy that have powered life on our planet up until now. Where nuclear fission – the splitting of atoms to release energy – has proven incredibly powerful but insanely destructive when things go wrong, fusion promises reliable, safe, low cost, green energy generation with no chance of radioactive meltdown.
TrackML was a Kaggle competition in 2018 with $25 000 in cash prizes where the challenge was to reconstruct particle tracks from 3D points left in silicon detectors. CERN (the European Organization for Nuclear Research) provided data over particles collision events. The rate at which they occur over there is in the neighborhood of hundreds of millions of collisions per second, or tens of petabytes per year. There is a clear need to be as efficient as possible when sifting through such an amount of data, and this is where machine learning methods may be of help.
Particles, in this case protons, are boosted to high energies inside the Large Hadron Collider (LHC) — each beam can reach 6.5 TeV giving a total of 13 TeV when colliding. Electromagnetic fields are used to accelerate the electrically charged protons in a 27 kilometers long loop. When the proton beams collide they produce a diverse set of subatomic byproducts which quickly decay, holding valuable information for some of the most fundamental questions in physics.
Detectors are made of layers upon layers of subdetectors, each designed to look for specific particles or properties. There are calorimeters that measure energy, particle-identification detectors to pin down what kind of particle it is and tracking devices to calculate the path of a particle. [1] We are of course interested in the tracking, tiny electrical signals are recorded as particles move through those types of detectors. What I will discuss is methods to reconstruct these recorded patterns of tracks, specifically algorithms involving machine learning.
Innovation comes from all ages, and this is further seen in the story of Xóchitl Guadalupe Cruz, an eight-year-old girl from Chiapas, Mexico who invented an entirely solar-powered device for heating water. The impact her invention could have on others around the world is immense, and this has inspired the UNAM’s (National Autonomous University of Mexico) Institute of Nuclear Sciences to award her.
To those in developed countries, her invention may not seem all that revolutionary as access to warm or hot water is commonplace, but for those in many other areas of the world, including her town in Mexico, this would be a luxury.
Pre-historic times and ancient history are defined by the materials that were harnessed during that period. We have the stone age, the bronze age, and the iron age. Today is a little more complex, we live in the Space Age, the Nuclear Age, and the Information Age. And now we are entering the Graphene Age, a material that will be so influential to our future, it should help define the period we live in. Potential applications for Graphene include uses in medicine, electronics, light processing, sensor technology, environmental technology, and energy, which brings us to Samsung’s incredible battery technology! Imagine a world where mobile devices and electric vehicles charge 5 times faster than they do today. Cell phones, laptops, and tablets that fully charge in 12 minutes or electric cars that fully charge at home in only an hour. Samsung will make this possible because, on November 28th, they announced the development of a battery made of graphene with charging speeds 5 times faster than standard lithium-ion batteries. Before I talk about that, let’s quickly go over what Graphene is. When you first hear about Graphene’s incredible properties, it sounds like a supernatural material out of a comic book. But Graphene is real! And it is made out of Graphite, which is the crystallized form of carbon and is commonly found in pencils. Graphene is a single atom thick structure of carbon atoms arranged in a hexagonal lattice and is a million time thinner than a human hair. Graphene is the strongest lightest material on Earth. It is 200 times stronger than steel and as much as 6 times lighter. It can stretch up to a quarter of its length but at the same time, it is the hardest material known, harder than a diamond. Graphene can also conduct electricity faster than any known substance, 140 times faster than silicone. And it conducts heat 10 times better than copper. It was first theorized by Phillip Wallace in 1947 and attempts to grow graphene started in the 1970s but never produced results that could measure graphene experimentally. Graphene is also the most impermeable material known, even Helium atoms can’t pass through graphene. In 2004, University of Manchester scientists Andre Geim and Konstantin Novoselov successfully isolated one atom thick flakes of graphene for the first time by repeatedly separating fragments from chunks of graphite using tape, and they were awarded the Nobel Prize in Physics in 2010 for this discovery. Over the past 10 years, the price of Graphene has dropped at a tremendous rate. In 2008, Graphene was one of the most expensive materials on Earth, but production methods have been scaled up since then and companies are selling Graphene in large quantities.