Toggle light / dark theme

Scientists Made a New Metal, and it Makes Nuclear Reactors Even Stronger

An international team of researchers has developed a new type of metal alloy that could make nuclear reactors safer and more stable in the long term. The new material is stronger and lasts longer than steel.

Scientists have developed a new kind of high quality metal alloy that is suitable to use in building nuclear reactors. While it might not be a metal that has been invented entirely from scratch, it’s only recently that we have been able to produce this kind (this quality) of metal. And it could mean great things for nuclear technologies.

Harvesting Nuclear Power

One of the primary problems with nuclear power is that steel typically only lasts around 40 years before it weakens and becomes too defective to use. High-entropy alloys could be the solution to this current problem, as this material is stronger (and safer) than steel.

Nuclear fusion needs a ‘Wright brothers’ moment, says firm closing on the target

Nuclear fusion needs a “Wright brothers” moment, to convince the world of its promise of unlimited clean and safe energy and so unlock significant private investment, according to a physicist whose says his company is closing in on that goal.

David Kingham, the chief executive of Tokamak Energy, has announced his company’s target of producing its first electricity by 2025 and feeding power into the grid by 2030, as well as investment from the UK’s Institution of Mechanical Engineers.

Harnessing the nuclear energy which powers the sun has long been touted as the ultimate solution to the challenge of powering the world while halting climate change. But, as fusion sceptics often say, the reality has stubbornly remained a decade or two away for many years.

Multi-scale simulations solve a plasma turbulence mystery

Solving the turbulence plasma mystery.


Cutting-edge simulations run at Lawrence Berkeley National Laboratory’s National Energy Research Scientific Computing Center (NERSC) over a two-year period are helping physicists better understand what influences the behavior of the plasma turbulence that is driven by the intense heating necessary to create fusion energy. This research has yielded exciting answers to long-standing questions about plasma heat loss that have previously stymied efforts to predict the performance of fusion reactors and could help pave the way for this alternative energy source.

The key to making fusion work is to maintain a sufficiently high temperature and density to enable the atoms in the reactor to overcome their mutual repulsion and bind to form helium. But one side effect of this process is turbulence, which can increase the rate of plasma, significantly limiting the resulting energy output. So researchers have been working to pinpoint both what causes the turbulence and how to control or possibly eliminate it.

Because are extremely complex and expensive to design and build, supercomputers have been used for more than 40 years to simulate the conditions to create better reactor designs. NERSC is a Department of Energy Office of Science User Facility that has supported fusion research since 1974.

Zoom to Mars in 6 weeks with new Russian nuclear-fission engine

A nuclear power propulsion system could propel a spacecraft to Mars in just over a month, a huge step forward from the current 18 months required. Russia might test a nuclear engine as early as 2018, the head of the Rosatom nuclear corporation revealed.

Another advantage of a nuclear engine is that it enables a spacecraft to maneuver throughout the flight, whereas existing technology only makes a defined trajectory flight possible.

Scientists happily surprised to find truffles free of Chernobyl radiation

This will make friends Vladimir and Marina happy.


Mushrooms and game meat in European regions where Chernobyl fallout was most intense still have excess radiation, but Burgundy truffles get the green light; foodies rejoice.

It’s been 30 years since the 1986 nuclear disaster in Ukraine in which a fire and explosion at the Chernobyl Nuclear Power Plant unleashed a slew of radioactive particles into the atmosphere. Swept along by winds and settled by heavy rains, radioactive particles, especially caesium-137 (137Cs), polluted large stretches of the European continent. And we all know the problem with radioactive things, they’ve got lasting power.

“Much of the continent’s topsoil layers are still radioactively contaminated,” says Ulf Büntgen, Head of the Dendroecology Group at the Swiss Federal Research Institute (WSL) and lead author of a new study measuring something dear to a foodie’s heart: the contamination level of Burgundy truffles (Tuber aestivum), like those pictured below.

82 Percent of Energy Sector IT Pros Say a Cyber Attack Could Cause Physical Damage

82% of Energy Industry (power grids, nuclear, solar, gas, etc.) say that a Cyber Attack Could Cause Physical Damage — and they didn’t highlight those on some sort of life support or machine to help patients, etc. to live.


According to the results of a recent Tripwire survey of more than 150 IT professionals in the energy, utilities, and oil and gas industries, 82 percent of respondents said a cyber attack on operational technology (OT) in their organization could cause physical damage.

The survey, conducted in November 2015 by Dimensional Research, also found that almost 60 percent of respondents said they aren’t able to track all the threats targeting their OT networks, either because they don’t have the visibility necessary to track all threats (16.2 percent), because they only track threats that directly target their department (8.1 percent) or because there are just too many threats (35.4 percent).

“After hundreds of years protecting our nation’s geographic borders, it is sobering to note that possibly the most vulnerable frontier happens to be the infrastructure that runs the largest companies in the country,” Rekha Shenoy, vice president and general manager of industrial IT cyber security for Tripwire parent company Belden, said in a statement.

Read more

China Close To Creating ‘Artificial Sun’ That Could End Reliance On Fossil Fuels

One way or another, via government research or the countless new startups, fusion is well on it’s way.


Chinese scientists have managed to create a hydrogen gas that is three times hotter than the sun.

The artificial solar energy could eventually be used as an inexhaustible source of power, ending reliance on fossil fuels and solving the world energy crisis.

Chinese boffins created the gas in a huge magnetic fusion reactor at the Institute of Physical Science in Hefei.

Read more

China’s nuclear fusion machine just smashed Germany’s hydrogen plasma record

Just last week, we reported that Germany’s revolutionary nuclear fusion machine managed to heat hydrogen gas to 80 million degrees Celsius, and sustain a cloud of hydrogen plasma for a quarter of a second. This was a huge milestone in the decades-long pursuit of controlled nuclear fusion, because if we can produce and hold onto hydrogen plasma for a certain period, we can harness the clean, practically limitless energy that fuels our Sun.

Now physicists in China have announced that their own nuclear fusion machine, called the Experimental Advanced Superconducting Tokamak (EAST), has produced hydrogen plasma at 49.999 million degrees Celsius, and held onto it for an impressive 102 seconds.

While this is nowhere near the hottest temperature that’s been produced by an experiment — that honour goes to the Large Hadron Collider, which hit a whopping 4 trillion degrees Celsius (250,000 times hotter than the centre of the Sun) back in 2012 — the team from China’s Institute of Physical Science in Hefei managed to recreate solar conditions for well over a minute.

Read more

Morocco Turns on What will Become the World’s Largest Solar Power Plant

As oil was to Saudi Arabia, could solar be to Morocco?


Morocco has turned on its enormous solar power plant in the town of Ourrzazate, on the edge of the Saharan desert. The plant already spans thousands of acres and is proficient of generating up to 160 megawatts of power. It’s already one of the largest solar power grids in the world, capable of being seen from space. And it’s only going to get bigger.

The present grid, called Noor I, is just the first phase of a planned project to bring renewable energy to millions living in Morocco. It will soon be followed by expansions, Noor II and Noor III, that will add even more mirrors to the present plant. Once the project is finished around 2018, the whole grid will cover 6,000 acres. It will be capable of producing up to 580 megawatts of power, comparable to that of a small nuclear reactor.

Read more