Toggle light / dark theme

The Nuclear-Powered Bullet Train From the 1970’s Series ‘Supertrain’

A nuclear-powered bullet train that was equipped with amenities more appropriate to a cruise ship, it had luxuries such as swimming pools and shopping centers.

Supertrain was an American television drama/adventure series that ran on NBC from February 7 to May 5, 1979. Nine episodes were made. Most of the cast of a given episode were guest stars. The production was elaborate, with huge sets and a high-tech model train for outside shots.

On February 7th, 1979, thousands of Americans were introduced to the Supertrain, which ran from New York to Los Angeles. Nuclear-powered, the super-wide-bodied train topped out at 190 miles per hour and boasted on-board luxuries like a swimming pool, a discotheque, a shopping center and a movie theater. It even had a dedicated on-board Social Director.

When laser beams meet plasma: New data addresses gap in fusion research

New research from the University of Rochester will enhance the accuracy of computer models used in simulations of laser-driven implosions. The research, published in the journal Nature Physics, addresses one of the challenges in scientists’ longstanding quest to achieve fusion.

In -driven (ICF) experiments, such as the experiments conducted at the University of Rochester’s Laboratory for Laser Energetics (LLE), short beams consisting of intense pulses of light—pulses lasting mere billionths of a second—deliver energy to heat and compress a target of hydrogen fuel cells. Ideally, this process would release more energy than was used to heat the system.

Laser-driven ICF experiments require that many laser beams propagate through a —a hot soup of free moving electrons and ions—to deposit their radiation energy precisely at their intended target. But, as the beams do so, they interact with the plasma in ways that can complicate the intended result.

The UK Is Racing to Build the World’s First Commercial Fusion Power Plant

What could the UK’s recent investment announcement mean for the future of sustainable energy?
» Subscribe to Seeker!http://bit.ly/subscribeseeker
» Watch more Elements! http://bit.ly/ElementsPlaylist

There are many directions we could go when it comes to the future of sustainable energy—but the UK made a bold move when it announced a huge investment (220 million pounds huge) in a prototype fusion power facility that could be functioning as a commercial power plant by 2040.

So it’s safe to say the race to fusion power is on. Fusion energy could provide us with clean, basically limitless energy.

But the thing is, fusion power isn’t really a reality yet, but does this prototype facility have a shot at making fusion a reality?

Nuclear fusion is what powers stars, including the sun. The ‘fusion’ part refers to the fact that isotopes of extremely light elements like hydrogen, are fusing together at the extremely high temperatures and pressures that exist at the center of stars. Under these conditions, gases like helium and hydrogen actually exist as plasmas.

So how could we possibly recreate what happens inside of stars here on Earth? By replicating those extreme conditions so that we can get the atoms to behave the way we want them to.

Building to house world’s largest tokamak fusion reactor now complete

The structure that will house one of the largest and most ambitious energy experiments in history is now complete, with engineers working on the ITER Tokamak Building swinging their last pylon into place in readiness for the nuclear fusion reactor’s assembly stage. Nine years in the making, the facility is built to host the type of super-hot high-speed reactions that take place inside the Sun, and hopefully advance our decades-long pursuit of clean and inexhaustible nuclear fusion energy.

In the works since 1985, ITER (International Thermonuclear Experimental Reactor) is a type of nuclear fusion reactor known as a tokamak and is a collaborative project involving thousands of scientists and engineers from 35 countries. These donut-shaped devices are designed to accommodate circular streams of plasma consisting of hydrogen atoms, which are compressed using superconducting magnets so that they fuse together and release monumental amounts of energy.

There are key technological challenges to overcome when it comes to tokamak reactors. Chiefly, these center on bringing them up to the required temperatures and keeping the streams of plasma in place long enough for the reactions to take place.

This Amateur Physicist Built a Fusion Reactor in His Backyard

face_with_colon_three


There’s no telling what you can do when you put your mind to it. Take Richard Hull, he built a small-scale fusion reactor—in a shed, in his backyard. A retired electronics engineer, Hull took a special interest in nuclear fusion. He lives in Lakeside, Virginia, with his cats and likes to pass on his knowledge and collaborate with others on projects. So he invites amateur scientists from all over the United States to meet at his home once a year to check out his reactor and share their inventions.

SUBSCRIBE: https://goo.gl/vR6Acb

#FusionReactor #NuclearFusion #amateur

This story is a part of our Frontiers series, where we bring you front and center to the dreamers, pioneers, and innovators leading society at the cutting edge. Let us take you along for a trip to the oft-imagined but rarely accomplished.

How we’ll get to Mars — what’s the biggest challenge, money or technology?

“There are a number of critical technologies that have to be assessed and tested before we go to Mars,” he told Quirks & Quarks host Bob McDonald.

His short-list includes reusable landers, new space suits, mining gear, water and fuel production plants and safe nuclear power sources that could be used to power habitats and equipment on the red planet.

Thirsk himself is currently working with the Canadian Space Agency to investigate the unique biomedical and health care issues involved in long term deep space missions.

Hard as ceramic, tough as steel: Newly discovered connection could help design of nextgen alloys

A new way to calculate the interaction between a metal and its alloying material could speed the hunt for a new material that combines the hardness of ceramic with the resilience of metal.

The discovery, made by engineers at the University of Michigan, identifies two aspects of this interaction that can accurately predict how a particular alloy will behave—and with fewer demanding, from-scratch quantum mechanical calculations.

“Our findings may enable the use of machine learning algorithms for alloy design, potentially accelerating the search for better alloys that could be used in turbine engines and nuclear reactors,” said Liang Qi, assistant professor of materials science and engineering who led the research.