Toggle light / dark theme

INeuraLS — Advanced NeuroTech For Rapid Knowledge and Skill Acquisition — US AirForce Research Labs

Ineurals — advanced neuro-technologies for rapid learning and skill acquisition.


The 711th Human Performance Wing, under the U.S. Air Force Research Laboratory leads the development, integration, and delivery of Airman-centric research, education, and consultation enabling the U.S. Air Force to achieve responsive and effective global vigilance, global reach, and global power now and in the future. It’s comprised of the United States Air Force School of Aerospace Medicine and the Airman Systems Directorate, whose science and technology competencies include Training, Adaptive Warfighter Interfaces, Bioeffects, Bioengineering, and Aerospace and Operational Medicine.

The Individualized Neural Learning System, or iNeuraLS, is a new augmented learning platform that will enable rapid learning by closed-loop modulation of cognitive states during skill acquisition. Essentially, the AFRL team seeks to develop a capability that will give Airmen the ability to rapidly acquire knowledge and skills on the fly through direct brain interfaces with the help of neurotechnologies.

And we have not 1, but 2 fascinating guests on the show with us today:

Dr. Nathaniel Bridges serves as the Neural Interfaces Team Lead within the Air Force Research Laboratory’s Cognitive Neuroscience Section. In this role, he and his team seek to find and enable ways to link the human brain/nervous system with technology in a manner that will benefit the Air Force. This in part relies on testing and evaluating current and emerging Brain Machine/Computer Interface technologies for the Air Force and investigating the impact of various neuromodulation technologies on cognitive performance. Dr. Bridges has his PhD. in Biomedical Engineering, from Drexel University, in Philadelphia, PA USA.

Dr. Amilcar dos Santos MD — Exploring Far Frontiers of Neural, Spinal, and Brain-Computer Interfaces

Exploring the frontiers of neuromodulation, neurostimulation, and neural interfaces.


Neuromodulation is defined as “the alteration of nerve activity through targeted delivery of a stimulus, such as electrical stimulation or chemical agents, to specific neurological sites in the body”. It is carried out to normalize – or modulate – nervous tissue function.

Neuromodulation is an evolving therapy that can involve a range of electromagnetic stimuli such as a magnetic field, an electric current, or a drug instilled directly in the sub-dural space (i.e. intra-thecal drug delivery).

Emerging applications involve targeted introduction of genes or gene regulators and light (optogenetics), but most clinical experience has been with electrical stimulation.

Existing and emerging neuromodulation treatments also include application in medication-resistant epilepsy, chronic head pain conditions, and functional therapy ranging from bladder and bowel or respiratory control, to improvement of sensory deficits, such as hearing and vision.

Scientists Invent a Microscope That Can Safely Look Straight Through Your Skull

A team of scientists has now found a way to create a clear image from scattered infrared light emitted from a laser, even after it’s passed through a thick layer of bone.

‘Our microscope allows us to investigate fine internal structures deep within living tissues that cannot be resolved by any other means,’ said physicists Seokchan Yoon and Hojun Lee from Korea University.


Seeing what the heck is going on inside of us is useful for many aspects of modern medicine. But how to do this without slicing and dicing through barriers like flesh and bone to observe living intact tissues, like our brains, is a tricky thing to do.

Thick, inconsistent structures like bone will scatter light unpredictably, making it difficult to figure out what’s going on behind them. And the deeper you wish to see, the more scattered light obscures fine and fragile biological structure.

There are plenty of options for researchers who are keen to watch living tissues do their thing, using clever optical tricks to turn scattered photons moving at certain frequencies into an image. But by risking tissue damage or operating only at shallow depths, they all have drawbacks.

Simulations open a new way to reverse cell aging

Simulations that model molecular interactions have identified an enzyme that could be targeted to reverse a called cellular senescence. The findings were validated with laboratory experiments on and equivalent tissues, and published in the Proceedings of the National Academy of Sciences (PNAS).

“Our research opens the door for a new generation that perceives aging as a reversible biological phenomenon,” says Professor Kwang-Hyun Cho of the Department of Bio and Brain engineering at the Korea Advanced Institute of Science and Technology (KAIST), who led the research with colleagues from KAIST and Amorepacific Corporation in Korea.

Cells respond to a variety of factors, such as oxidative stress, DNA damage, and shortening of the telomeres capping the ends of chromosomes, by entering a stable and persistent exit from the . This process, called cellular senescence, is important, as it prevents damaged from proliferating and turning into . But it is also a natural process that contributes to aging and . Recent research has shown that cellular senescence can be reversed. But the laboratory approaches used thus far also impair tissue regeneration or have the potential to trigger malignant transformations.