Toggle light / dark theme

We can reprogram our DNA. The nucleus of a cell is not read only. It is actually read and write. Basically, the cell is a programmable device, in response to environmental information.

The templates for protein synthesis are RNA (ribonucleic acid) molecules. In particular, a class of RNA molecules called messenger RNA (mRNA) are the information-carrying intermediates in protein synthesis. Other RNA molecules, such as transfer RNA (tRNA) and ribosomal RNA (rRNA), are part of the protein-synthesizing machinery. All forms of cellular RNA are synthesized by RNA polymerases that take instructions from DNA templates. This process of transcription is followed by translation, the synthesis of proteins according to instructions given by mRNA templates.

The flow of information is dependent on the genetic code, which defines the relation between the sequence of bases in DNA (or its mRNA transcript) and the sequence of amino acids in a protein.

We can send therapeutic messages to the DNA inside the stem cells’ nucleus. DNA sends the information (in the form of nerve impulses) to the RNA molecules called messenger RNA. The transfer RNA synthesizes proteins to carry out the instructions given by messenger RNA templates for the stem cells to become new neurons and cells to replace the neurons and cells that were damaged or destroyed.


This 3D animation shows how proteins are made in the cell from the information in the DNA code.

Light falling on our retinas triggers signals that pass up the optic nerve, causing neurons to fire in the brain so we can process what we see. Long after scientists discovered this fact they have learned its not the whole story; some of the retina’s cells do the opposite, suppressing activity in the brain. It will probably be a long time before we really grasp the reasons for this, but it appears to make for a more stable circadian rhythm and therefore sleeping cycles.

Biologists call messages that increase neuron firing ‘excitatory signaling’ and those that reduce activity ‘inhibitory signaling’. It has been taken for granted for decades that the eye only produces excitatory signals.

Dr Takuma Sonada has overthrown that idea with a paper in Science, based on his work while a PhD student at Northwestern University reporting on a subset of retinal ganglial cells (RCGs) whose signals are inhibitory.

TABLE OF CONTENTS —————
:00–15:11 : Introduction
:11–36:12 CHAPTER 1: POSTHUMANISM
a. Neurotechnology b. Neurophilosophy c. Teilhard de Chardin and the Noosphere.

—————————————————————————————–
POSTHUMAN TECHNOLOGY
—————————————————————————————–

:12–54:39 CHAPTER 2 : TELEPATHY/ MIND-READING
a. MRI
b. fMRI
c. EEG
d. Cognitive Liberty e. Dream-recording, Dream-economies f. Social Credit Systems g. Libertism VS Determinism.

:02:07–1:25:48 : CHAPTER 3 : MEMORY/ MIND-AUGMENTING
a. Memory Erasure and Neuroplasticity b. Longterm Potentiation (LTP/LTD)
c. Propanolol d. Optogenetics e. Neuromodulation f. Memory-hacking g. Postmodern Dystopias h. Total Recall, the Matrix, and Eternal Sunshine of the Spotless Mind i. Custom reality and identity.

:25:48–1:45:14 CHAPTER 4 : BCI/ MIND-UPGRADING
a. Bryan Johnson and Kernel b. Mark Zuckerberg and Neuroprosthetics c. Elon Musk, Neural Lace, and Neuralink d. Neurohacking, Neuroadvertizing, Neurodialectics e. Cyborgs, Surrogates, and Telerobotics f. Terminator, Superintelligence, and Merging with AI
g. Digital Analogs, Suffering, and Virtual Drugs h. Neurogaming and “Nervana” (technological-enlightenment)

:45:14 −2:02:57 CHAPTER 5 : CONNECTOME/ MIND-MAPPING

To tackle this problem, researchers at the RIKEN Center for Biosystems Dynamics Research identified a gel that closely mimics the physicochemical properties of organs that have undergone the tissue clearing process. Starting with computer simulations and following up with laboratory tests, the team optimized the soaking solution temperature, dye and antibody concentrations, chemical additives, and electrical properties to produce the best staining and imaging results. They then tested their method with more than two dozen commonly used dyes and antibodies on mouse and marmoset brains.

Scans of an entire mouse brain and one hemisphere of a marmoset brain—rendered into 3D using light sheet microscopy—revealed the similarity between the two animals’ neural vascular systems, showing the use of the system for comparative anatomy, the researchers report this week in. They also showed that they could simultaneously stain and image up to four molecular targets in a mouse brain, a feat that “has never been reported before,” says Ludovico Silvestri, of the European Laboratory for Non-linear Spectroscopy, who was not involved in the research.

The team also used its technique to image an entire infant marmoset and a small human brain sample—something that could one day lead to new understandings of solid tumors and neurodegenerative diseases. The team says its approach to optimizing staining can be applied to other techniques to advance the entire field of 3D imaging.

An unconscious person’s response to odors after a serious brain injury may be a simple yet powerful signal of how aware they are and how likely they are to survive and recover, a new study suggests, relying on responses to the scent of shampoo and the stench of rotting fish.

Patients who survive brain damage from trauma, stroke, or heart attack are plunged into forms of unconsciousness that vary from minimal consciousness to unresponsive wakefulness, sometimes called a vegetative state. Specialists trying to tell who is in which state have fared only a little better than a coin flip: About 4 in 10 people thought to be unconscious are actually aware.

That uncertainty makes decisions for families and clinicians supremely difficult, from weighing how to treat pain to whether to withdraw life support. Sophisticated imaging of unconscious patients’ brain activity can reveal hints of awareness that go beyond behavioral assessments, sometimes only to deepen the mystery of who will get better. Now Israeli scientists have turned to the sense of smell, evolutionarily speaking our most ancient sensory system, as a window into our brain. Their paper appears Wednesday in Nature.

Alzheimer’s disease is the sixth leading cause of death in the United States, affecting one in 10 people over the age of 65. Scientists are engineering nanodevices to disrupt processes in the brain that lead to the disease.

People who are affected by Alzheimer’s disease have a specific type of plaque, made of self-assembled molecules called β-amyloid (Aβ) , that build up in the brain over time. This buildup is thought to contribute to loss of neural connectivity and . Researchers are studying ways to prevent the peptides from forming these dangerous plaques in order to halt development of Alzheimer’s disease in the brain.

In a multidisciplinary study, scientists at the U.S. Department of Energy’s (DOE) Argonne National Laboratory, along with collaborators from the Korean Institute of Science and Technology (KIST) and the Korea Advanced Institute of Science and Technology (KAIST), have developed an approach to prevent plaque formation by engineering a nano-sized device that captures the dangerous peptides before they can self-assemble.

Rudolph Heider who survived the Spanish Flu, the Great Depression, and World War Two has beaten Coronavirus on his 107th birthday.


A great-great-grandfather who lived through the Spanish Flu, Great Depression and World War II has now conquered coronavirus — just in time for his 107th birthday.

Rudolph ‘Rudi’ Heider battled the deadly virus for weeks while quarantined at a nursing home in Chesterfield, Missouri.

On Tuesday his family finally received the joyous news that he’d been cleared to come out of isolation after reaching the two-week mark without any symptoms.

The cutting-edge ‘KNasa Chef Knife’ is twice as sharp as other blades and stays sharp for five times longer.

The brains behind it claim it is the first true innovation in knife making in over 200 years.

The knife is made from an ultra-hard alloy developed by scientists at the California Institute of Technology (Caltech) and has been tested by engineers at NASA.

“Everybody here’s been vaccinated anyway”

“It’s a hoax”

Given that I can’t see the man talking’s mouth due to his face mask I have trouble blindly assuming this video is true. Is that my own cognitive dissonance though? Was awfully weird to see Pence walking around the Mayo Clinic face mask less. Almost seemed to me like he felt like he had protection against the virus. Was it just his religious faith that inspired him to act with such little caution or is there something big here that we aren’t being told?


Fox News’ John Roberts Caught on Hot Mic Discussing COVID-19 as a Hoax.
& said “everyone here has been vaccinated anyway!”

Video became Viral after it captured an informal exchange between Roberts and New York Times photographer Doug Mills.

“Like you often have to do in science, we first hit the problem with a hammer to see how the system breaks, then backtrack from there,” Simpson said.

By that she means that in order to determine if the gut microbiome influenced drug addiction, they first needed to compare an organism with a normal gut microbiome to one without. To do that, the researchers gave some rats antibiotics that depleted 80 percent of their gut microbes. All of the rats — those with and without gut microbes — were dependent on the prescription opioid pain reliever oxycodone. Then some of the rats from each group went into withdrawal.

“To me, the most surprising thing was that the rats all seemed the same on the surface,” George said. “There weren’t any major changes in the pain-relieving effect of opioids, or symptoms of withdrawal or other behavior between the rats with and without gut microbes.”

It wasn’t until the team looked at the rats’ brains that they saw a significant difference. The typical pattern of neuron recruitment to different parts of the brain during intoxication and withdrawal was disrupted in rats that had been treated with antibiotics, and thus lacked most of their gut microbes. Most notably, during intoxication, rats with depleted gut microbes had more activated neurons in the regions of the brain that regulate stress and pain (periaqueductal gray, locus coeruleus) and regions involved in opioid intoxication and withdrawal (central amygdala, basolateral amygdala). During withdrawal, microbe-depleted rats had fewer activated neurons in the central amygdala, as compared to rats with normal gut microbiomes.

“It was many months of counting black dots,” Simpson said. “But in the end it became clear that, at least in rats, gut microbes alter the way the brain responds to drugs.”

That shift could affect behavior, she explained, because a decrease in neurons recruited in the central amygdala could result in fewer withdrawal symptoms, which can in turn lead to a higher risk of drug abuse.


As a now-healthy graduate student, Simpson first worked on techniques to visualize molecules in the brain. But she couldn’t shake her interest in the gut microbiome and its connections to the brain.