Toggle light / dark theme

Online program improves well-being of stroke survivors

Access to an online program that provides easily accessible, interactive, tailored healthy lifestyle and behavior change techniques is associated with better health-related quality of life among adult stroke survivors, according to new research from the University of Newcastle and Flinders University.

Stroke can lead to serious consequences for those that survive in terms of physical and cognitive disability. Improving lifestyle and , including tobacco and alcohol use, , diet, depression, and anxiety, has the potential to significantly enhance ’ quality of life.

Led by Dr. Ashleigh Guillaumier from the University of Newcastle and senior author Professor Billie Bonevski from Flinders University, the study, published in the journal PLOS Medicine, undertook a randomized control trial to evaluate the online program Prevent 2nd Stroke (P2S), which encourages users to set goals and monitor progress across various health risk areas.

Study identifies brain mechanism that may drive the link between childhood deprivation and trait anxiety

New research suggests that socioeconomic hardship during childhood leaves children vulnerable to lower cognitive ability in adolescence and increased trait anxiety during adulthood. The findings, published in the journal Social Cognitive and Affective Neuroscience, further suggest that these effects are driven by the recruitment of the right lateral prefrontal cortex.

Growing up in poverty can have negative repercussions on mental health. For example, children who grow up in socioeconomic deprivation demonstrate lower cognitive ability and report higher trait anxiety as young adults. Researchers Pavla Čermáková and her team launched a study to investigate this interplay between early socioeconomic difficulty, cognitive ability, and trait anxiety and to shed light on the neural mechanism behind these relationships.

“I have always found fascinating how early life influences our mental health when we are adults. I see a huge opportunity for prevention of later mental disorders if we focus on what is happening in the earliest stages of human life,” Čermáková, an associate professor at Charles University in Prague and head of the Department of Epidemiology at the Second Faculty of Medicine.

Consciousness and higher spatial dimensions

Peter Sjöstedt-Hughes » IAI TV.


The hard problem of consciousness is the most pressing unsolved mystery in both philosophy and science. To solve such a problem, we are going to need revolutionary ways of thinking. Philosopher of mind, Peter Sjöstedt-Hughes, argues higher spatial dimensions might hold the key to the hard problem.

(This is an abridged version of the chapter ‘Deeper than Depth’ in the book Modes of Sentience)

Study shows simple, computationally-light model can simulate complex brain cell responses

The brain is inarguably the single most important organ in the human body. It controls how we move, react, think and feel, and enables us to have complex emotions and memories. The brain is composed of approximately 86 billion neurons that form a complex network. These neurons receive, process, and transfer information using chemical and electrical signals.

Learning how respond to different signals can further the understanding of cognition and development and improve the management of disorders of the brain. But experimentally studying neuronal networks is a complex and occasionally invasive procedure. Mathematical models provide a non-invasive means to accomplish the task of understanding , but most current models are either too computationally intensive, or they cannot adequately simulate the different types of complex neuronal responses. In a recent study, published in Nonlinear Theory and Its Applications, IEICE, a research team led by Prof. Tohru Ikeguchi of Tokyo University of Science, has analyzed some of the complex responses of neurons in a computationally simple neuron model, the Izhikevich neuron model.

“My laboratory is engaged in research on neuroscience and this study analyzes the basic mathematical properties of a neuron model. While we analyzed a single neuron model in this study, this model is often used in computational neuroscience, and not all of its properties have been clarified. Our study fills that gap,” explains Prof. Ikeguchi. The research team also comprised Mr. Yota Tsukamoto and Ph.D. student Ms. Honami Tsushima, also from Tokyo University of Science.

Memory Is Formed Through Rewiring of Global Network Among Pre-existing Local Neuronal Ensembles

Summary: Information about new experiences is retained by being tied to pre-existing activity patterns in the brain. Memory is acquired when the patterns are connected to each other across brain regions via transient bursts of activity.

Source: Osaka Metropolitan University.

In the brain, neuronal ensembles that bear the memory of an experience existed beforehand, suggesting a paradox that we already know what we are about to know.