Toggle light / dark theme

An efficient and highly performing memristor-based reservoir computing system

Reservoir computing (RC) is an approach for building computer systems inspired by current knowledge of the human brain. Neuromorphic computing architectures based on this approach are comprised of dynamic physical nodes, which combined can process spatiotemporal signals.

Researchers at Tsinghua University in China have recently created a new RC system based on memristors, that regulate the flow of electrical current in a circuit, while also recording the amount of charge that previously flowed through it. This RC system, introduced in a paper published in Nature Electronics, has been found to achieve remarkable results, both in terms of performance and efficiency.

“The basic architecture of our memristor RC system comes from our earlier work published in Nature Communications, where we validated the feasibility of building analog reservoir layer with dynamic memristors,” Jianshi Tang, one of the researchers who carried out the study, told TechXplore. “In this new work, we further build the analog readout layer with non-volatile memristors and integrate it with the dynamic memristor array-based parallel reservoir layer to implement a fully analog RC system.”

Research Paves Way for Innovative Theory of Cognitive Processing

Summary: A new theory suggests glial cells, specifically astrocytes, play a key role in cognitive processing.

Source: University Health Network.

A team of scientists from the Krembil Brain Institute, part of the University Health Network in Toronto, and Duke University in Durham, North Carolina, has developed the first computer model predicting the role of cortical glial cells in cognition.

Your Body Has an Internal Clock That Dictates When You Eat, Sleep and Might Have a Heart Attack

Have you ever suffered from jet lag or struggled after turning the clock forward or back an hour for daylight saving time? These are examples of you feeling the effects of what researchers call your biological clock, or circadian rhythm – the “master pacemaker” that synchronizes how your body responds to the passing of one day to the next.

This “clock” is made up of about 20,000 neurons in the hypothalamus. This area near the center of the brain coordinates your body’s unconscious functions, such as breathing and blood pressure. Humans aren’t the only lifeforms that have an internal clock system: All vertebrates – or mammals, birds, reptiles, amphibians, and fish – have biological clocks, as do plants, fungi, and bacteria. Biological clocks are why cats are most active at dawn and dusk, and why flowers bloom at certain times of the day.

Chronobiology is the study of circadian rhythms, the physical, mental, and behavioral changes that follow a 24-hour cycle. These natural processes respond principally to light and dark and affect most living things, including animals, plants, and microbes.

Robopill Drills Through Mucus to Deliver Drugs

Anosmia, or the inability to smell, can be caused not only by head injuries but also by exposure to certain toxins and by a variety of medical problems—including tumors, Alzheimer’s, and viral diseases, such as COVID. The sense of smell also commonly atrophies with age; in a 2012 study in which more than 1,200 adults were given olfactory exams, 39 percent of participants age 80 and above had olfactory dysfunction.

The loss of smell and taste have been dominant symptoms of COVID since the beginning of the pandemic. People with COVID-induced anosmia currently have only three options: Wait and see if the sense comes back on its own, ask for a steroid medication that reduces inflammation and may speed recovery, or begin smell rehab, in which they expose themselves to a few familiar scents each day to encourage the restoration of the nose-brain nerves. Patients typically do best if they seek out medication and rehab within a few weeks of experiencing symptoms, before scar tissue builds up. But even then, these interventions don’t work for everyone.

In April 2020, researchers at VCU’s smell and taste clinic launched a nationwide survey of adults who had been diagnosed with COVID to determine the prevalence and duration of smell-related symptoms. They’ve followed up with those people at regular intervals, and this past August they published results from people who were two years past their initial diagnosis. The findings were striking: Thirty-eight percent reported a full recovery of smell and taste, 54 percent reported a partial recovery, and 7.5 percent reported no recovery at all. “It’s a serious quality of life issue,” says Evan Reiter, director of the VCU clinic.

The Social Brain Ep.4: Brain Decoding: The Science of ‘Mind Reading’

Can scientists read your mind and figure out what you’re thinking just by looking at your brain? Well, sort of.

In this episode of The Social Brain with Taylor Guthrie (@The Cellular Republic) and I (@Sense of Mind) talk about a fascinating new area of cognitive neuroscience, called “brain decoding” as well as its counterpart, “brain encoding,” and related topics. It all centers on the question posed above and the future applications, some of which are scary while others are inspiring.

– What do you want us to cover in future episodes? Drop it in the comments!

Link to follow:
Make sure to subscribe to Taylor’s Channel: @The Cellular Republic.

Videos that we mentioned:
- Breaking the Neural Code (James Haxby talk): https://youtu.be/gl3du4CaALg.
- Kanwisher vs. Haxby Debate: https://youtu.be/u1xTfTPqWmo.
- Decoding Language Representation (Alexander Huth talk): https://youtu.be/rmqzLv089b4
- Engineering Thoughts and Memories (Jack Gallant talk): https://youtu.be/muwIhFLqies.

Podcast: Social Brain Podcast: