Physicists cast doubt on the role of coherent superpositions in the brain.
Category: neuroscience – Page 521
Although treatments for depression exist, sometimes these treatments don’t work for many who use them. Furthermore, women experience higher rates of depression than men, yet the cause for this difference is unknown, making their illnesses—at times—more complicated to treat.
Summary: Study reveals those who microdosed psilocybin for 30 days showed greater improvements in mood, mental health, and psychomotor abilities than those who did not microdose. The findings have positive implications for the use of psychedelics to help treat mental health disorders.
Source: University of British Columbia.
The latest study to examine how tiny amounts of psychedelics can impact mental health provides further evidence of the therapeutic potential of microdosing.
The Neuro-Network.
𝐃𝐮𝐫𝐢𝐧𝐠 𝐬𝐥𝐞𝐞𝐩 𝐭𝐡𝐞 𝐛𝐫𝐚𝐢𝐧’𝐬 𝐫𝐞𝐚𝐜𝐭𝐢𝐨𝐧 𝐭𝐨 𝐬𝐨𝐮𝐧𝐝 𝐫𝐞𝐦𝐚𝐢𝐧𝐬 𝐬𝐭𝐫𝐨𝐧𝐠 𝐛𝐮𝐭 𝐨𝐧𝐞 𝐜𝐫𝐢𝐭𝐢𝐜𝐚𝐥 𝐟𝐞𝐚𝐭𝐮𝐫𝐞 𝐨𝐟 𝐜𝐨𝐧𝐬𝐜𝐢𝐨𝐮𝐬 𝐚𝐭𝐭𝐞𝐧𝐭𝐢𝐨𝐧 𝐝𝐢𝐬𝐚𝐩𝐩𝐞𝐚𝐫𝐬
𝘼 𝙣𝙚𝙬 𝙙𝙞𝙨𝙘𝙤𝙫𝙚𝙧𝙮 𝙛𝙧𝙤𝙢 𝙏𝙚𝙡 𝘼𝙫𝙞𝙫 𝙐𝙣𝙞𝙫𝙚𝙧𝙨𝙞𝙩𝙮 𝙢𝙖… See more.
A new discovery from Tel Aviv University may provide a key to a great scientific enigma: How does the awake brain transform sensory input into a conscious experience? The groundbreaking study relied on data collected from electrodes implanted, for medical purposes, deep in the human brain. The information was utilized to examine differences between the response of the cerebral cortex to sounds in sleep vs. wakefulness, at a resolution of single neurons.
The cancer vaccine project is the latest indication of Amazon’s growing interest in the healthcare sector.
Distinct neuron types in the auditory organ are necessary for encoding different features of sound and relaying them to the brain. Researchers at Karolinska Institutet provide evidence of an early, neuronal activity-independent, emergence of the different subtypes of auditory neurons, prior to birth in mice. The findings have recently been published in Nature Communications.
Distinct neuron types in the auditory organ are necessary for encoding different features of sound and relaying them to the brain. Researchers at Karolinska Institutet provide evidence of an early, neuronal activity-independent, emergence of the different subtypes of auditory neurons, prior to birth in mice. The findings have recently been published in Nature Communications.
Previous studies have provided ambiguous results on whether the different subtypes of auditory neurons emerge during prenatal or postnatal development, with in the latter case, a possible role of neuronal activity in generating their diversity. In this new study, researchers demonstrate that the fate of auditory neuron subtypes is under genetic control in the prenatal period, and reveal the complex molecular networks controlling their genesis.
At present, our brains are mostly dependent on all the stuff below the neck to turn thought into action. But advances in neuroscience are making it easier than ever to hook machines up to minds. See neuroscientists John Donoghue and Sheila Nirenberg, computer scientist Michel Maharbiz, and psychologist Gary Marcus discuss the cutting edge of brain-machine interactions in “Cells to Silicon: Your Brain in 2050,” part of the Big Ideas series at the 2014 World Science Festival.
This program is part of the Big Ideas Series, made possible with support from the John Templeton Foundation.
Visit our Website: http://www.worldsciencefestival.com/
Like us on Facebook: https://www.facebook.com/worldsciencefestival.
Follow us on twitter: https://twitter.com/WorldSciFest.
Original Program date: May 29, 2014
Remission of depression with new magnetic therapy:3.
Although she’d tried medications and therapy, Chase felt her symptoms get worse over the course of a few months. And she knew things were really getting serious when thoughts of suicide crept in.
That’s when her mother found research about a new type of treatment for depression called Stanford neuromodulation therapy, which uses magnetic fields to stimulate the brain. (It was previously referred to as Stanford accelerated intelligent neuromodulation therapy or SAINT.)
The treatment is similar to transcranial magnetic stimulation, a non-invasive therapy that’s been used to help treat depression for about 15 years.
Brain-machine interfaces (BMIs) are devices that enable direct communication/translation between biological neuronal networks (e.g. a brain or a spine) and external machines. They are currently being used as a tool for fundamental neuroscience research and also for treating neurological disorders and for manipulating neuro-prosthetic devices. As remarkable as today’s BMIs are, however, the next generation BMIs will require new hardware and software with improved resolution and specificity in order to precisely monitor and control the activities of complex neuronal networks. In this talk, I will describe my group’s effort to develop new neuroelectronic devices enabled by silicon nanotechnology that can serve as high-precision, highly multiplexed interface to neuronal networks. I will then describe the promises, as well as potential pitfalls, of next generation BMIs. Hongkun Park is a Professor of Chemistry and Chemical Biology and a Professor of Physics at Harvard University. He is also an Institute Member of the Broad Institute of Harvard and MIT and a member of the Harvard Center for Brain Science and Harvard Quantum Optics Center. He serves as an associate editor of Nano Letters. His research interests lie in exploring solid-state photonic, optoelectronic, and plasmonic devices for quantum information processing as well as developing new nano-and microelectronic interfaces for living cells, cell networks, and organisms. Awards and honors that he received include the Ho-Am Foundation Prize in Science, NIH Director’s Pioneer Award, and the US Vannevar Bush Faculty Fellowship, the David and Lucile Packard Foundation Fellowship for Science and Engineering, the Alfred P. Sloan Research Fellowship, and the Camille Dreyfus Teacher-Scholar Award. This talk was given at a TEDx event using the TED conference format but independently organized by a local community.
Summary: In mice, photoreceptor cells drive vision and non-vision functions using distinct circuits in the eye.
Source: NIH/NEI
The eye’s light-sensing retina taps different circuits depending on whether it is generating image-forming vision or carrying out a non-vision function such as regulating pupil size or sleep/wake cycles, according to a new mouse study from the National Eye Institute (NEI) and the National Institute of Mental Health (NIMH).