Toggle light / dark theme

Experimental device breaks up blood clots using twisted ultrasound

It goes without saying that if someone has a blood clot in their brain, that clot should be cleared as soon as possible. An experimental new transducer could help, as it uses swirling waves of ultrasound to break up blood clots much faster than existing methods.

Developed by scientists at North Carolina State University and the Georgia Institute of Technology, the device is designed specifically for use on what are known as cerebral venous sinus thrombosis (CVST) clots. These form in veins that ordinarily allow blood to drain from the brain. When those veins are blocked, blood pressure in the brain increases, to the point that a potentially lethal or disabling hemorrhage may occur.

Most existing CVST treatments involve using drugs to dissolve the clot. According to the team behind the new study, however, it takes an average of about 29 hours – and never less than 15 hours – for such medications to work. By contrast, the new transducer breaks up the clots in less than 30 minutes.

A Billionaire and Brain Computer Interface: Behind the Scenes at Consumer Electronic Show 2023

Dr. Cody reveals private conversations about BCI and experience at CES2023.

►►►Mendi Affiliate Link (free shipping, 15% off Pre-Black Friday before 24Nov): https://www.mendi.io/?discount=mendiwithdrcody.
►►►Muse Headband (Black Friday 20% Off Dr. Cody Discount (applied at checkout 10Nov-23Nov applied at checkout)): https://mbsy.co/68Mq9h.
►►►FocusCalm $25 off: Enter “DrCody” at discount checkout: https://www.focuscalm.com.
►►►NeoRhythm Affiliate link: https://tidd.ly/3q8wNom (10% discount code is “drcody” at checkout)
►►►Start a Myndlift Clinic: $200 discount promo code-RFCZECCJ
►►►Neurosity Affiliate link https://neurosity.co/cody.

►►► GET YOUR FREE MEDITATION GUIDE HERE: https://bit.ly/2XIRDNa.

►►► INSTAGRAM (Behind The Scenes with Cody Rall MD): https://www.instagram.com/codyrall_techforpsych/

Cody Rall, M.D., is a United States Navy trained Psychiatrist who specializes in neurotechnology wearables. He is a co-founder of Stanford Brainstorm, the world’s first academic laboratory dedicated to transforming brain health through entrepreneurship.

Dr. Rall also served as a board member of the psychiatry innovation lab, an annual national competition at the American Psychiatric Association that works as an incubator for groups developing technological solutions to problems in mental health care. He is the founder of Techforpsych, a media and relations company that covers advancements in technology related to neuroscience.

Pop-up Electrode Device Could Help With 3D Mapping of the Brain

Source: Penn State

Understanding the neural interface within the brain is critical to understanding aging, learning, disease progression and more. Existing methods for studying neurons in animal brains to better understand human brains, however, all carry limitations, from being too invasive to not detecting enough information.

A newly developed, pop-up electrode device could gather more in-depth information about individual neurons and their interactions with each other while limiting the potential for brain tissue damage.

Alleviating Symptoms: Brain Stimulation Could Help Treat Alzheimer’s Disease

Alzheimer’s disease, which is the most common form of dementia, is challenging to treat. A possible therapy is deep brain stimulation delivered by a pacemaker-like device. A team of researchers from Charité – Universitätsmedizin Berlin discovered that stimulating a specific network in the brains of Alzheimer’s patients can decrease their symptoms. The study, published in the journal Nature Communications.

<em>Nature Communications</em> is a peer-reviewed, open-access, multidisciplinary, scientific journal published by Nature Portfolio. It covers the natural sciences, including physics, biology, chemistry, medicine, and earth sciences. It began publishing in 2010 and has editorial offices in London, Berlin, New York City, and Shanghai.

Origins of Pleasurable Touch Traced From Skin to Brain

Summary: Study reveals a skin-to-brain neural circuit that responds to rewarding forms of social touch. Researchers say the findings could provide an avenue for harnessing the power of touch to assist in treating social and emotional disorders.

Source: Columbia University.

A parent’s reassuring touch. A friend’s warm hug. A lover’s enticing embrace. These are among the tactile joys in our lives.

The Next Generation of Humans: Nanobots

Part 1: the future of medicine: nanobots part 2: a new era in mental health: nanobots part 3: the healing power of nanobots part 4: the genetic and data-connected revolution: nanobots part 5: the end of plastic surgery: nanobots part 6: the fertility revolution: nanobots part 7: the job-specific human: nanobots part 8: the end of education as we know it: nanobots part 9: the rise of programmable matter: nanobots part 10: the next generation of humans: nanobots.

Nanotechnology is a rapidly evolving field with the potential to revolutionize medicine in the future. One of the most promising applications of nanotechnology is the use of nanobots in medicine. Nanobots are microscopic robots that can be programmed to perform specialized activities such as disease diagnosis and treatment. They can be used to diagnose and treat a wide range of conditions, including mental illnesses such as depression and anxiety, as well as physical injuries and illnesses.

One of the most interesting potential applications of nanobots in medicine is the treatment of mental illnesses. Mental illnesses are among the most common and devastating diseases of our time. They can be programmed to constantly map the brain and correct faults as they develop. Alzheimer’s disease may theoretically be treated if a person was implanted with nanobots at birth.

New Research Could Link Evolution of Complex Life to Genetic “Dark Matter”

Octopuses have fascinated scientists and the public with their remarkable intelligence, from using tools to engaging in creative play, problem-solving, and even escaping from aquariums. Now, their cognitive abilities may provide significant insight into understanding the evolution of complex life and cognition, including the human brain.

An international team of researchers from Dartmouth College and the Max Delbrück Center (MDC) in Germany has published a study in the journal Science Advances.

<em>Science Advances</em> is a peer-reviewed, open-access scientific journal that is published by the American Association for the Advancement of Science (AAAS). It was launched in 2015 and covers a wide range of topics in the natural sciences, including biology, chemistry, earth and environmental sciences, materials science, and physics.