Toggle light / dark theme

Scientists reverse Alzheimer’s in mice using nanoparticles

A research team co-led by the Institute for Bioengineering of Catalonia (IBEC) and West China Hospital Sichuan University (WCHSU), working with partners in the UK, has demonstrated a nanotechnology strategy that reverses Alzheimer’s disease in mice.

Unlike traditional nanomedicine, which relies on nanoparticles as carriers for therapeutic molecules, this approach employs nanoparticles that are bioactive in their own right: “supramolecular drugs.” The work has been published in Signal Transduction and Targeted Therapy.

Instead of targeting neurons directly, the therapy restores the proper function of the blood-brain barrier (BBB), the vascular gatekeeper that regulates the brain’s environment. By repairing this critical interface, the researchers achieved a reversal of Alzheimer’s pathology in animal models.

Epigenetic shifts link maternal infection during pregnancy to higher risk of offspring developing schizophrenia

The health of mothers during pregnancy has long been known to play a role in the lifelong mental and physical health of offspring. Recent studies have found that contracting an infection during pregnancy can increase the risk that offspring will develop some neurodevelopmental disorders, conditions that are associated with the atypical maturation of some parts of the brain.

An infection is an invasion of pathogens, such as bacteria, viruses, fungi or parasites, which can then multiply and colonize host tissues. Findings suggest that when an expecting mother contracts an infection, her immune system can respond to it in ways that could impact the development of the fetus.

Researchers at University of Manchester and Manchester Metropolitan University recently carried out a study aimed at further investigating the processes through which maternal infections during pregnancy could increase the risk that offspring will develop schizophrenia later in life. Schizophrenia is a typically debilitating mental health condition characterized by hallucinations, false beliefs about oneself or the world (e.g., delusions) and cognitive impairments.

Synaptic changes in the brains of patients with frontotemporal dementia can be modeled in the laboratory

Neurons produced from frontotemporal dementia patients’ skin biopsies using modern stem cell technology recapitulate the synaptic loss and dysfunction detected in the patients’ brains, a new study from the University of Eastern Finland shows.

Frontotemporal dementia is a progressive neurodegenerative disease affecting the frontal and temporal lobes of the brain. The most common symptoms are , difficulties in understanding or producing speech, problems in movement, and psychiatric symptoms.

Often, has no identified genetic cause, but especially in Finnish patients, hexanucleotide repeat expansion in the C9orf72 gene is a common genetic cause, present in about half of the familial cases and in 20% of the sporadic cases where there is no family history of the disease.

Fat particles could be key to treating metabolic brain disorders

Evidence challenging the long-held assumption that neuronal function in the brain is solely powered by sugars has given researchers new hope of treating debilitating brain disorders. A University of Queensland study led by Dr. Merja Joensuu and published in Nature Metabolism showed that neurons also use fats for fuel as they fire off the signals for human thought and movement.

“For decades, it was widely accepted that relied exclusively on glucose to fuel their functions in the brain,” Dr. Joensuu said. “But our research shows fats are undoubtedly a crucial part of the neuron’s in the brain and could be a key to repairing and restoring function when it breaks down.”

Dr. Joensuu from the Australian Institute for Bioengineering and Nanotechnology along with lab members Ph.D. candidate Nyakuoy Yak and Dr. Saber Abd Elkader from UQ’s Queensland Brain Institute set out to examine the relationship of a particular gene (DDHD2) to hereditary spastic paraplegia 54 (HSP54).

Neuroscientists can now predict dementia from the way you breathe in your sleep

Scientists have discovered that disrupted breathing during sleep, particularly conditions like sleep apnea, creates a measurable cascade of brain changes that predicts cognitive decline with startling accuracy.

Recent research analyzing over one million health records found that people with sleep-disordered breathing face between 1.3 and 5.11 times higher risk of developing various forms of dementia, depending on the specific condition.

The most dramatic finding: those with documented sleep breathing problems showed dementia risk ratios that peaked above five-fold for certain neurodegenerative diseases.

Biomaterials and cell-based therapy post spinal cord injury

Spinal cord injury (SCI) imposes a significant physical, social, and economic burden on millions of patients and their families worldwide. Although medical and surgical care improvements have decreased mortality rates, sustained recovery remains constrained. Cell-based therapies offer a promising strategy for neuroprotection and neuro-regeneration post-SCI. This article reviews the most promising preclinical approaches, encompassing the transplantation of embryonic stem cells (ESCs), mesenchymal stem cells (MSCs), neural stem cells (NSCs), oligodendrocyte progenitor cells (OPCs), Schwann cells (SCs), and olfactory ensheathing cells (OECs), along with the activation of endogenous pluripotency cell banking strategies. We also outline key ancillary strategies to enhance graft cell viability and differentiation, such as trophic factor assistance, engineered biomaterials for supportive scaffolds, and innovative methods for a synergistic effect in treatment, including promoting neuronal regeneration and reducing glial scars. We highlight the key aspects of SCI pathophysiology, the fundamental biology of cell treatments, and the advantages and limitations of each approach.

There are several approaches to treating spinal cord injuries that show great promise: Cellular therapies, which utilize a range of cells such as embryonic, neural, and mesenchymal stem cells, along with astrocytes, Schwann cells, olfactory ensheathing cells, and reprogrammed cells; The use of innovative biomaterials, including hydrogels, collagen, polycaprolactone fibers, and advanced 3D-printing technologies, provides valuable support for tissue repair.

Brain probe powerfully records neural circuits during behavior

Trying to document how single brain cells participate in networks that govern behavior is a daunting task. Brain probes called Neuropixels, which feature high-density silicon arrays, have enabled scientists to collect electrophysiological data of this nature from a variety of animals. These include fish, reptiles, rodents and primates, as well as humans.

Neuropixels, which come in several versions, record electrical activity from hundreds to thousands of neurons simultaneously. Neurons are nerve cells that receive, process and transmit information.

While the data collected has led to insights on the neural basis of perception and decision-making, those probes cannot sample fine-scale brain structures. They also are limited in resolving (separately distinguishing) the electrical fields around individual brain cells.

/* */