Toggle light / dark theme

This time I come to talk about a new concept in this Age of Artificial Intelligence and the already insipid world of Social Networks. Initially, quite a few years ago, I named it “Counterpart” (long before the TV series “Counterpart” and “Black Mirror”, or even the movie “Transcendence”).

It was the essence of the ETER9 Project that was taking shape in my head.

Over the years and also with the evolution of technologies — and of the human being himself —, the concept “Counterpart” has been getting better and, with each passing day, it makes more sense!

Summary: Female mice who have not been pregnant or given birth show activation in the anterior cingulate cortex when they acquire maternal behaviors after exposure to pups. The findings reveal through repeated exposure to pups, virgin female mice are capable of learning maternal behaviors that resemble those of mothers following birth.

Source: Medical University of Vienna.

Various conditions such as postpartum depression or postpartum psychosis can lead to an alteration in maternal behavior and disrupt the mother-child bonding process.

It gives new meaning to the phrase “speak your mind.

Do you remember how legendary cosmologist Stephen Hawking communicated using his special screen-equipped chair? Well, that was a brain-computer interface (BCI), a device that allows a person to communicate using their brain signals.

There are approximately 70 million people across the globe who suffer from speech-related disorders. What if there was a BCI for each one of these patients that could at least spell out words, if not speak for them? A team of researchers from the University of California, San Fransico (UCSF) works on one such groundbreaking device.

They have created a neuroprosthesis (a type of BCI device that re-establish lost functions of the nervous system) that analyzes the brain activity of a user with speech paralysis. The device then translates the brain signals into single letters and spells sentences on a screen. Reading the sentences lets anyone know what the user wants to say.

“This is the first system that combines all the pieces; efficient energy harvesting, energy storage, and the controlled brain stimulator.”

Researchers have devised an ingenious way to power deep brain simulators — Using the person’s breathing movements.

About 150,000 deep brain stimulators are implanted every year. Normally placed under the skin in the chest area with electrodes implanted in the brain, these stimulators are known to help with neurological and psychiatric diseases when traditional treatments fail.

Summary: Mutations of the PTEN gene cause neurons to grow to twice the size and form four times the number of synaptic connections to other neurons as a normal neuron. Removing the RAPTOR gene, an essential gene in the mTORC1 signaling pathway, prevents the neuronal and synaptic overgrowth associated with PTEN mutations. Using Rapamycin to inhibit mTORC1 rescues all the changes in neuronal overgrowth.

Source: the geisel school of medicine at dartmouth.

Findings from a new study published in Cell Reports, involving a collaborative effort between researchers at the Luikart Laboratory at Dartmouth’s Geisel School of Medicine and the Weston Laboratory at the University of Vermont, are providing further insight into the neurobiological basis of autism spectrum disorders (ASD) and pointing to possible treatments.

Past neuroscience studies have consistently demonstrated that the aging of the mammalian nervous system is liked with a decline in the volume and functioning of white matter, nerve fibers found in deep brain tissues. Although this is now a well-established finding, the mechanisms underpinning the decline of white matter and associated pathologies are poorly understood.

Researchers at Ludwig Maximilian University (LMU) of Munich, Technical University of Munich, the German Center for Neurodegenerative Diseases, Munich Cluster of Systems Neurology and University Hospital Würzburg have recently carried out a study aimed at better understanding the neural mechanisms that might result in the deterioration of white matter. Their findings, published in Nature Neuroscience, suggest that adaptive immune responses could promote the loss of in aging white matter.

“Among the hallmarks of brain aging is a decline in white matter volume and function which leads to an increase in neurological disorders,” Mikael Simons and Özgün Gökce, two of the researchers who carried out the study, told Medical Xpress. “White matter contains nerve fibers (axons), which are extensions of nerve cells (neurons). Many of these are surrounded by a type of sheath or covering called myelin, which allows our neurons to communicate fast, and gives white matter its color.”

At first glance, the human body seems to be symmetrical: two arms, two legs, two eyes, two ears, and even the nose and mouth appear to be mirrored on an imaginary axis that divides most people’s faces. Finally, the brain is split into two nearly equal-sized halves, and the furrows and bulges follow a similar pattern. The initial impression, however, is misleading since there are small, functionally relevant differences between the left and right sides of the different brain regions.

The two hemispheres have distinct functional specializations. For instance, most individuals process language mostly in their left hemisphere whereas spatial attention is primarily processed in their right hemisphere. Work can thus be distributed more effectively to both sides, and the overall range of tasks is expanded.

However, this so-called lateralization, or the tendency for brain regions to process certain functions more in the left or right hemisphere, differs between people. And not only in the minority whose brains are mirror-inverted in comparison to the majority. Even people with classically arranged brains have varying degrees of asymmetry. Previous research has indicated that this, in turn, may have an effect on the functions themselves.

European moles shrink their brains by 11% before the winter and grow them again by 4% by the summer.

European moles face an existential crisis in the depths of winter. Their high-limit mammal metabolisms need more food than is available during the coldest months. Instead of migrating or hibernating to deal with the seasonal challenge, moles have devised an unexpected energy-saving strategy: shrinking their brains.

In a recent study, a group from the Max Planck Institute of Animal Behavior headed by Dina Dechmann found that European moles shrink their brains by 11% before the winter and grow them back by 4% by summer. They are a new group of mammals known for reversibly shrinking their brains through a process known as Dehnel’s phenomenon.

Summary: Researchers have identified a new type of synaptic plasticity they call behavioral timescale synaptic plasticity (BTSP). The study reveals how the entorhinal cortex sends instructive signals to the hippocampus and directs it to specifically reorganize the specific location and activity of a neural subset to achieve altered behavior in response to changes in environment and spatial cues.

Source: Texas Children’s Hospital.

A longstanding question in neuroscience is how mammalian brains (including ours) adapt to external environments, information, and experiences.