Toggle light / dark theme

For a long time, neuroscientists believed that the neurons you are born with are the neurons you have for the rest of your life, and any neuron lost will not be replaced. Recent research has shown that specific brain regions contain neural stem cells that can generate new neurons. In this talk, Dr Daniel Berg of the University of Aberdeen will discuss what we know about these stem cells and what we can do to activate them to generate more neurons.

Watch this presentation on LabRoots at: http://www.labroots.com/webcast/keynote-speaker-regulation-a…ippocampus.

In the adult central nervous system (CNS) small populations of neurons are formed in the adult olfactory bulb and dentate gyrus of the hippocampus. In the adult hippocampus, newly born neurons originate from stem cells that exist in the subgranular zone of the dentate gyrus. Progeny of these putative stem cells differentiate into neurons in the granular layer within a month of the cells’ birth, and this late neurogenesis continues throughout the adult life of all mammals. Environmental stimulation can differentially effect the proliferation, migration and differentiation of these cells in vivo. These environmentally induced changes in the structural organization of the hippocampus, result in changes in electrophysiological responses in the hippocampus, as well as in hippocampal related behaviors. We are studying the cellular, molecular, as well as environmental influences that regulate neurogenesis in the adult brain. We have recently identified several molecules that work coordinately to regulate proliferation, survival and differentiation of these adult derived stem cells. In addition, we have demonstrated that specific types of activity can influence the behavior of these newly born cells. Finally, we have developed several methods to monitor the in vivo maturation of neurogenesis in vivo, which has provided insight to the functional importance of neurogenesis to behavior. A consensus model of the function of adult neurogenesis is emerging.

Ah, Doom. Who knows where we’d be today if it weren’t for the innovation that made you the granddaddy of first-person shooters? Probably one of the things that’s helping to keep id Software’s iconic game alive after all these years is the fact that it can be ported to just about anything. It’s even possible to play Doom inside Doom itself.

As you can imagine, many people have attempted to see what crazy methods they can to play this legendary FPS. Now, some scientists are doing something a little different. Namely, they want to see if it’s possible to grow their own neurons that can be taught to play games. And yes, they want to see if they will be able to control Doom.

A video from the YouTube channel The Thought Emporium goes into detail about the hypothesis. The basic idea is to be able to hook up some lab-grown rat neurons to a computer that will be able to play Doom, at least in a rudimentary fashion.

Fedorenko didn’t know it at the time, but those first studies would set in motion a whirlwind that would alter the course of her research. Her team’s findings would ignite media attention, prompting even more people to send along their brain scans. What started as a single case study has now snowballed into the Interesting Brains Project.

By the end of this fall, the project will likely have scanned more than 40 people with atypical brains. In many cases, participants are missing entire brain regions, and like Elyse, they didn’t find out until they were adults.

That may be a tribute to the brain’s flexibility — its ability to change and adapt — including its redundancies, Fedorenko says. Like backup generators, some brain areas can kick into gear if others get injured. A close look at cases like Elyse’s could help scientists better understand how our brains cope with damage and why some kinds are worse than others.

Summary: Researchers have innovated a method to produce lab-grown mini brains, known as human brain organoids, free of animal cells, promising a more accurate study and treatment of neurodegenerative conditions.

Previously, brain organoids were grown using a substance derived from mouse sarcomas called Matrigel, leading to inconsistencies due to its undefined composition and variability. The new method uses an engineered extracellular matrix free of animal components, improving the neurogenesis of brain organoids.

This breakthrough allows for more accurate replication of human brain conditions and could open doors for personalized treatment of neurodegenerative diseases such as ALS and Alzheimer’s.

In the largest observational study to date on “SuperAgers” — people in their 80s who have brains as sharp as those 30 years younger — researchers in Spain found key differences in lifestyle that may contribute to these older adults’ razor-sharp minds.

SuperAgers in the study had more gray matter in parts of the brain related to movement, and they scored higher on agility, balance and mobility tests than typical older adults — even though the physical activity levels of the two groups were the same.

“Though superagers report similar activity levels to typical older people, it’s possible they do more physically demanding activities like gardening or stair climbing,” said senior author Bryan Strange, director of the Laboratory for Clinical Neuroscience at the Technical University of Madrid, in a statement.

A team at the National Institute of Standards and Technology in Boulder, Colorado, has reported the successful implementation of a 400,000 pixel superconducting nanowire single-photon detector (SNSPD) that they say will pave the way for the development of extremely light-sensitive large-format superconducting cameras. The camera will also prove invaluable for those doing medical research, where the ability to examine organs such as the brain without disturbing tissue is critical.

Superconducting detectors operate at very low temperatures and generate a minimum of excess noise, making them ideal for testing the non-local nature of reality, investigating dark matter, mapping the early universe, and performing quantum computation and communication. Previously there were no large-scale superconducting cameras – even the largest demonstrations have never exceeded 20 thousand pixels.

This was especially true for one of the most promising detector technologies, the superconducting nanowire single-photon detector (SNSPD). These detectors have been demonstrated with system detection efficiencies of 98.0%, sub-3-ps timing jitter, sensitivity from the ultraviolet (250nm) to the mid-infrared (10um), and dark count rates below 6.2e-6 counts per second (cps), but despite more than two decades of development they have never achieved an array size larger than a kilopixel. Here, we report on the implementation and characterization of a 400,000 pixel SNSPD camera, a factor of 400 improvement over the previous state-of-the-art. The array spanned an area 4×2.5 mm with a 5x5um resolution, reached unity quantum efficiency at wavelengths of 370 nm and 635 nm, counted at a rate of 1.1e5 cps, and had a dark count rate of 1e-4 cps per detector (corresponding to 0.13 cps over the whole array).

New research into the hormone somatostatin has the potential to change the general scientific consensus on how it influences Alzheimer’s and how the disease begins to develop in the brain.

Somatostatin plays a role in many parts of our body. In previous studies, the hormone was also thought to drive the production of the enzyme neprilysin, which can degrade amyloid beta, the protein that clumps together and damages neurons in the brains of people with Alzheimer’s.

The new study suggests that somatostatin actually influences amyloid-beta more directly, putting the brakes on the mechanisms by which the protein’s monomer (single molecule) form combines into an oligomer (multi-molecule) form.