“Supplementation of riboflavin and/or biotin is likely to be beneficial in a subset of Parkinson’s disease patients, in which gut dysbiosis plays pivotal roles,” Nagoya University medical researcher Hiroshi Nishiwaki and colleagues write in their paper published in May.
This paper presents a critical analysis of image-based 3D reconstruction using neural radiance fields (NeRFs), with a focus on quantitative comparisons with respect to traditional photogrammetry. The aim is, therefore, to objectively evaluate the strengths and weaknesses of NeRFs and provide insights into their applicability to different real-life scenarios, from small objects to heritage and industrial scenes. After a comprehensive overview of photogrammetry and NeRF methods, highlighting their respective advantages and disadvantages, various NeRF methods are compared using diverse objects with varying sizes and surface characteristics, including texture-less, metallic, translucent, and transparent surfaces. We evaluated the quality of the resulting 3D reconstructions using multiple criteria, such as noise level, geometric accuracy, and the number of required images (i.e.
For the first time, scientists have invented a liquid ink that doctors can print onto a patient’s scalp to measure brain activity. The technology, presented December 2 in the journal Cell Biomaterials, offers a promising alternative to the cumbersome process currently used for monitoring brainwaves and diagnosing neurological conditions. It also has the potential to enhance non-invasive brain-computer interface applications.
“Our innovations in sensor design, biocompatible ink, and high-speed printing pave the way for future on-body manufacturing of electronic tattoo sensors, with broad applications both within and beyond clinical settings,” says Nanshu Lu, the paper’s co-corresponding author at the University of Texas at Austin.
Electroencephalography (EEG) is an important tool for diagnosing a variety of neurological conditions, including seizures, brain tumors, epilepsy, and brain injuries. During a traditional EEG test, technicians measure the patient’s scalp with rulers and pencils, marking over a dozen spots where they will glue on electrodes, which are connected to a data-collection machine via long wires to monitor the patient’s brain activity. This setup is time consuming and cumbersome, and it can be uncomfortable for many patients, who must sit through the EEG test for hours.
During an EEG test, technicians normally use rulers and pencils to mark up a person’s head before gluing electrodes across the scalp. These electrodes are then connected via long wires to a machine that records brain activity. Alternatively, a cap with electrodes can be directly placed on the head.
However, this whole process is time-consuming and inconvenient, say the developers of the new technology. It generally takes around one to two hours to set up an EEG test, said co-developer Nanshu Lu, a professor of engineering at the University of Texas at Austin. The electrodes then need to be monitored about every two hours because the glue that attaches them to the scalp dries up, she told Live Science in an email.
A cancer therapy that prompts the body’s immune defenses against viruses and bacteria to attack tumors can make patients more vulnerable to heart attack and stroke. A possible explanation for this side effect is that the treatment interferes with immune regulation in the heart’s largest blood vessels, a new study suggests.
Led by researchers at NYU Langone Health and its Perlmutter Cancer Center, the new work focused on a potent class of cancer-fighting drugs called immune checkpoint inhibitors. These medications work by blocking molecules embedded on the surface of cells—immune checkpoints—which normally serve as “brake pedals” that prevent excess immune activity, or inflammation. Some tumors are known to hijack these checkpoints to weaken the body’s defenses, so by blocking the checkpoints, the treatments enable the immune system to kill tumor cells.
However, this treatment type may also trigger damaging levels of inflammation in the heart, brain, stomach, and other organs, the researchers say. For example, past studies have shown that about 10% of those with atherosclerosis, the buildup of hardened fatty deposits (plaques) within artery walls, have a heart attack or stroke following cancer treatment. However, the specific mechanisms behind this issue had until now remained unclear.
Summary: Researchers identified specific plant compounds that provide antioxidant and neuroprotective effects, contributing to brain health beyond basic nutrition. By analyzing plant-based foods like lemon balm, sage, and elderberry, scientists linked compounds such as phenolics and terpenes to benefits like reducing oxidative stress and scavenging harmful reactive species.
Quercetin-rich foods, such as Queen Garnet plum and clove, showed strong potential to prevent neuron-like cell damage. This study sheds light on how plant-based diets and supplements could support brain health and manage neuroinflammation-related conditions.
Advances in Neurostimulation in Aging: From Basic Science to Clinical Applications
Guest Editors Dr. Orestis Stylianou and Dr. Gianluca Susi and Associate Editors Dr. Peter Mukli and Dr. Frigyes Samuel Racz and the editorial team of GeroScience (Official Journal of the American Aging Association, published by Springer) invite submission of original research articles and review articles related to basic and clinical research focused on neurostimulation in aging.
Over the past two decades, studies have shown the potential benefits of invasive and non-invasive brain stimulation techniques in addressing age-related alterations in brain function. While invasive techniques were previously dominant in small-scale clinical investigations, recent advances have significantly reduced the invasiveness of these techniques, making them safer and more accessible for research and medical applications. Transcranial current and magnetic stimulation (tCS and tMS) as well as deep brain stimulation (DBS) have shown promising results in improving various types of memory in the elderly population, including but not limited to working, episodic, associative, semantic, and procedural memory. These interventions have the potential to play a vital role in enhancing healthy brain aging and treating age-related pathological conditions affecting the central nervous system.
“An Unscientific American” discusses the resignation of Laura Helmuth from her position as editor-in-chief at Scientific American. The author, Michael Shermer, argues that her departure exemplifies the risks of blending facts with ideology in scientific communication.
Helmuth faced backlash after posting controversial remarks on social media regarding political views, which led to public criticism and her eventual resignation. Shermer reflects on how the magazine’s editorial direction has shifted towards progressive ideology, suggesting this has compromised its scientific integrity. He notes that had Helmuth made disparaging comments about liberal viewpoints, her outcome would likely have been more severe.
The article critiques Scientific American for endorsing positions on gender and race that Shermer sees as ideologically driven rather than based on scientific evidence. He expresses concern that such ideological capture within scientific publications can distort facts and undermine credibility.
For more details, you can read the full article here.
About the Author. Michael Shermer is a prominent science writer and the founder of the Skeptics Society. He is known for his work promoting scientific skepticism and questioning pseudoscience. Shermer is also the author of several books on belief, morality, and the nature of science, including The Believing Brain and The Moral Arc. https://quillette.com/2024/11/21/an-unscientific-american-sc…signation/ – Quillette is an Australian-based online magazine that focuses on long-form analysis and cultural commentary. It is politically non-partisan, but relies on reason, science, and humanism as its guiding values.
Quillette was founded in 2015 by Australian writer Claire Lehmann. It is a platform for free thought and a space for open discussion and debate on a wide range of topics, including politics, culture, science, and technology.
Researchers have linked a specific type of body fat to the abnormal proteins in the brain that are hallmarks of Alzheimer’s disease up to 20 years before the earliest symptoms of dementia appear, according to a study being presented at the annual meeting of the Radiological Society of North America (RSNA).
The researchers emphasize that lifestyle modifications targeted at reducing this fat could influence the development of Alzheimer’s disease.
“This crucial result was discovered because we investigated Alzheimer’s disease pathology as early as midlife—in the 40s and 50s—when the disease pathology is at its earliest stages, and potential modifications like weight loss and reducing visceral fat are more effective as a means of preventing or delaying the onset of the disease,” said lead study author Mahsa Dolatshahi, M.D., M.P.H., post-doctoral research associate at Mallinckrodt Institute of Radiology (MIR) at Washington University School of Medicine in St. Louis, Missouri.
Recent research found that mindfulness meditation creates a unique state of relaxed alertness, marked by specific brainwave changes linked to focus and awareness, distinct from simple relaxation, and unrelated to changes in physiological arousal.