If you were asked to find the most powerful and mysterious object in the world, where would you look? The human brain.
As explained by scientist Dr. Michio Kaku, \.
If you were asked to find the most powerful and mysterious object in the world, where would you look? The human brain.
As explained by scientist Dr. Michio Kaku, \.
📝 — Kee, et al.
This review focuses on compartmentalized inflammation in Multiple sclerosis (MS) and in particular, what we know about meningeal tertiary lymphoid structures which are organised clusters of immune cells, associated with more severe and progressive forms of MS.
Full text is available 👇
Multiple sclerosis (MS) is a chronic, immune-mediated, demyelinating disease of the central nervous system (CNS). The most common form of MS is a relapsing–remitting disease characterised by acute episodes of demyelination associated with the breakdown of the blood–brain barrier (BBB). In the relapsing–remitting phase there is often relative recovery (remission) from relapses characterised clinically by complete or partial resolution of neurological symptoms. In the later and progressive stages of the disease process, accrual of neurological disability occurs in a pathological process independent of acute episodes of demyelination and is accompanied by a trapped or compartmentalised inflammatory response, most notable in the connective tissue spaces of the vasculature and leptomeninges occurring behind an intact BBB.
For years, they had been losing their central vision—what allows people to see letters, faces, and details clearly. The light-receiving cells in their eyes had been deteriorating, gradually blurring their sight.
But after receiving an experimental eye implant as part of a clinical trial, some study participants can now see well enough to read from a book, play cards, and fill in a crossword puzzle despite being legally blind. Science Corporation, the California-based brain-computer interface company developing the implant, announced the preliminary results this week.
When Max Hodak, CEO of Science and former president of Neuralink, first saw a video of a blind patient reading while using the implant, he was stunned. It led his company, which he founded in 2021 after leaving Neuralink, to acquire the technology from Pixium Vision earlier this year.
We named him Squirt—not because he was the smallest of the 16 cuttlefish in the pool, but because anyone with the audacity to scoop him into a separate tank to study him was likely to get soaked. Squirt had notoriously accurate aim.
As a comparative psychologist, I’m used to assaults from my experimental subjects. I’ve been stung by bees, pinched by crayfish and battered by indignant pigeons. But, somehow, with Squirt it felt different. As he eyed us with his W-shaped pupils, he seemed clearly to be plotting against us.
Of course, I’m being anthropomorphic. Science does not yet have the tools to confirm whether cuttlefish have emotional states, or whether they are capable of conscious experience, much less sinister plots. But there’s undeniably something special about cephalopods—the class of ocean-dwelling invertebrates that includes cuttlefish, squid and octopus.
Two later-stage trials investigating semaglutide, the drug in Ozempic, for treating Alzheimer’s disease are due to complete in 2025, with potentially big results.
By Grace Wade
It’s estimated that anywhere from three to seven percent of school-age children may have dyslexia, a neurodevelopmental issue that affects reading, spelling, and writing. There are different ideas about why dyslexia occurs, although they relate to dysfunction in brain networks, and are likely due to multiple causes in affected individuals; the disorder may not have a singular underlying cause. Neuroimaging studies of dyslexic individuals have produced inconsistent results.
Since dyslexia has a heritable, and therefore, genetic component, scientists wanted to know more about how genetics and brain mapping could reveal more about the pathology of dyslexia. A new study has shown that carriers of genetic variants that increase the risk of dyslexia also have changes in brain structure, which occur in areas that are related to language, motor coordination, and vision. The findings have been reported in Science Advances.
The breakthrough marks a promising target for drug therapies that slow, possibly reverse, the disease’s development
NEW YORK, NY, December 23, 2024 — Researchers with the CUNY ASRC have unveiled a critical mechanism that links cellular stress in the brain to the progression of Alzheimer’s disease (AD). The study, published in the journal Neuron, highlights microglia, the brain’s primary immune cells, as central players in both the protective and harmful responses associated with the disease.
Microglia, often dubbed the brain’s first responders, are now recognized as a significant causal cell type in Alzheimer’s pathology. However, these cells play a double-edged role: some protect brain health, while others worsen neurodegeneration. Understanding the functional differences between these microglial populations has been a research focus for Pinar Ayata, the study’s principal investigator and a professor with the CUNY ASRC Neuroscience Initiative and the CUNY Graduate Center’s Biology and Biochemistry programs.
A new study from Northwestern Medicine reports that, much like a conductor harmonizes various instruments in an orchestra to create a symphony, breathing synchronizes hippocampal brain waves to enhance memory during sleep.
This is the first time breathing rhythms during sleep have been linked to these hippocampal brain waves — called slow waves, spindles, and ripples — in humans. Scientists knew these waves were linked to memory but their underlying driver was unknown.
“To strengthen memories, three special neural oscillations emerge and synchronize in the hippocampus during sleep, but they were thought to come and go at random times,” said senior study author Christina Zelano, professor of neurology at Northwestern University.
Exercise improves cognitive performance for over 24 hours, especially when paired with good sleep. A study of older adults links physical activity and deep sleep to better memory, highlighting the importance of an active lifestyle for brain health.
Exercise provides a short-term boost to brain function that can last throughout the next day, according to a new study by researchers at University College London (UCL).
Earlier research conducted in controlled laboratory settings revealed that cognitive performance improves in the hours following exercise. However, the duration of these benefits remained unclear.