Toggle light / dark theme

Summary: Researchers unlocked how the brain processes melodies, creating a detailed map of auditory cortex activity. Their study reveals that the brain engages in dual tasks when hearing music: tracking pitch with neurons used for speech and predicting future notes with music-specific neurons.

This breakthrough clarifies the longstanding mystery of melody perception, demonstrating that some neural processes for music and speech are shared, while others are uniquely musical. The discovery enhances our understanding of the brain’s complex response to music and opens avenues for exploring music’s emotional and therapeutic impacts.

A new study by researchers at UC San Francisco provides new insight into how the brain processes musical melodies. Through precise mapping of the cerebral cortex, the study uncovered that our brains process music by not only discerning pitch and the direction of pitch changes but also by predicting the sequence of upcoming notes, each task managed by distinct sets of neurons. The findings have been published in Science Advances.

Previous research had established that our brains possess specialized mechanisms for processing speech sounds, particularly in recognizing pitch changes that convey meaning and emotion. The researchers hypothesized that a similar, perhaps specialized, set of neurons might exist for music, dedicated to predicting the sequence of notes in a melody, akin to how certain neurons predict speech sounds.

“Music is both uniquely human and universally human. Studying the neuroscience of music can therefore reveal something fundamental about what it means to be human,” said lead author Narayan Sankaran, a postdoctoral fellow in the Kavli Center for Ethics, Science, and the Public at UC Berkeley, who conducted the study while a researcher in the lab of UCSF’s Edward Chang.

Scientists are investigating whether an oral drug sprinkled with gold nanoparticles could one day treat neurodegenerative diseases like Parkinson’s and multiple sclerosis.

The experimental medicine, called CNM-Au8, has now shown success in boosting the brain’s metabolism in phase II clinical trials.

Research on the safety and efficacy of the daily drug is still ongoing, but the initial results have researchers hopeful. The medicine contains suspended nanoparticles of gold that can apparently pass the blood-brain barrier and improve energy supply to neurons, preventing their decline.

Elon Musk shared an update on Neuralink’s first human patient and their experience with the N1 chip.

The first human Neuralink patient seems to have made a full recovery with no ill effects and is able to control the mouse around the screen just by thinking, said Elon Musk during an apparent on X Spaces.

Musk added that Neuralink continuously observes the patient’s ability to use the N1 brain implant. The patient is currently tasked to click on the mouse button as often as possible.

Neurodegenerative diseases are among the most complex human ailments, and their exact causes and mechanisms are the subject of ongoing research and debate. When it comes to Huntington’s disease, steadily accumulating evidence over the past 30 years has led to a model of molecular events that explains several key features of the disease, including why it has an earlier onset in some people and why it causes symptoms such as involuntary movements and mood swings.

But two new complementary papers from The Rockefeller University suggest that this may not be the whole story.

Huntington’s is caused by somatic CAG expansions in which a triplet repeat of DNA bases in a mutated Huntingtin (mHTT) gene increase in number throughout life, leading to . As described in Nature Genetics and in Neuron, the Rockefeller scientists used a custom technique to reveal that these genetic repeats are unstable, and likely producing more toxic proteins, only in select brain . Moreover, some cells they studied proved surprisingly resilient to CAG repeat expansion.

Feb 20 (Reuters) — The first human patient implanted with a brain-chip from Neuralink appears to have fully recovered and is able to control a computer mouse using their thoughts, the startup’s founder Elon Musk said late on Monday.

“Progress is good, and the patient seems to have made a full recovery, with no ill effects that we are aware of. Patient is able to move a mouse around the screen by just thinking,” Musk said in a Spaces event on social media platform X.

Musk said Neuralink was now trying to get as many mouse button clicks as possible from the patient.

Lung cancer is the deadliest of cancers. Screening could save thousands of lives, so why is it not the norm?

https://econ.st/2VAzFNX

Lung cancer kills more people than any other form of tumour.
About nine out of ten people die within five years of being diagnosed with the disease. If the cancer is caught very early most patients could be cured. But doctors struggle to diagnose early because there are no symptoms until the cancer is in its late stages and has spread to other organs.

Some experts think that doctors should screen people at high risk to find lung cancer before symptoms appear. The national lung-screening trial in America subjected 53,000 current and former heavy smokers to either X-ray or computed-tomography scans every year for three years. Its results, reported in 2011 found that screening with CT scans did save lives.

New research from the University of Sussex holds promise for extending life expectancy and enhancing treatment options for a common and aggressive brain cancer affecting thousands in the UK annually and hundreds of thousands globally.

Published in the Journal of Advanced Science, the study revealed that the protein PANK4, previously overlooked, can hinder cancer cells’ response to chemotherapy in glioblastoma, an aggressive form of brain cancer and if the protein is removed, cancer cells respond better to the main chemotherapy drug used globally for the treatment of glioblastoma.

Glioblastoma stands as one of the most aggressive types of brain cancer, with approximately 3,200 adults diagnosed annually in the UK and around 250,000 to 300,000 cases globally. Despite treatment with surgery, radiation, and the chemotherapy drug temozolomide, which initially yields positive responses, patients typically face a bleak prognosis, with a survival rate of just one to 18 months post-diagnosis due to the rapid development of resistance in cancer cells.

Macquarie University neuroscientists have developed a single-dose genetic medicine that has been proven to halt the progression of both motor neuron disease (MND) and frontotemporal dementia (FTD) in mice—and may even offer the potential to reverse some of the effects of the fatal diseases.

It may also hold opportunities for treating more common forms of dementia, such as Alzheimer’s disease, which is the second most common cause of death in Australia after heart disease.

The new treatment, dubbed CTx1000, targets pathological build-ups of the protein TDP-43 in cells in the brain and spinal cord.