Toggle light / dark theme

Join us on Patreon! https://www.patreon.com/MichaelLustgartenPhD

Discount Links/Affiliates:
Blood testing (where I get the majority of my labs): https://www.ultalabtests.com/partners/michaellustgarten.

At-Home Metabolomics: https://www.iollo.com?ref=michael-lustgarten.
Use Code: CONQUERAGING At Checkout.

Clearly Filtered Water Filter: https://get.aspr.app/SHoPY

Epigenetic, Telomere Testing: https://trudiagnostic.com/?irclickid=U-s3Ii2r7xyIU-LSYLyQdQ6…M0&irgwc=1
Use Code: CONQUERAGING

NAD+ Quantification: https://www.jinfiniti.com/intracellular-nad-test/

Scientists at Neuro-Electronics Research Flanders (NERF), under the direction of Prof. Vincent Bonin, have released two innovative studies that provide fresh perspectives on the processing and distribution of visual information in the brain. These studies contest conventional beliefs regarding the straightforwardness of visual processing, instead emphasizing the intricate and adaptable nature of how the brain understands sensory information.

Read Full Story.

Thanks to their genetic makeup, their ability to navigate mazes and their willingness to work for cheese, mice have long been a go-to model for behavioral and neurological studies.

In recent years, they have entered a new arena—virtual reality—and now Cornell researchers have built miniature VR headsets to immerse them more deeply in it.

The team’s MouseGoggles—yes, they look as cute as they sound—were created using low-cost, off-the-shelf components, such as smartwatch displays and tiny lenses, and offer visual stimulation over a wide field of view while tracking the mouse’s eye movements and changes in pupil size.

Summary: Researchers identified variants in the DDX53 gene, located on the X chromosome, as contributors to autism spectrum disorder (ASD). These genetic variants, found predominantly in males, provide critical insights into the biological mechanisms behind autism’s male predominance.

The study also uncovered another potential gene, PTCHD1-AS, near DDX53, linked to autism, emphasizing the complexity of ASD’s genetic architecture. This research highlights the importance of the X chromosome in ASD and opens avenues for more precise diagnostics and therapeutics.

The findings challenge current models, urging a re-evaluation of how autism is studied. These discoveries mark a significant step in understanding the genetic underpinnings of autism.

While companies like Neuralink have recently provided some flashy demos of what could be achieved by hooking brains up to computers, the technology still has serious limitations preventing wider use.

Non-invasive approaches like electroencephalograms (EEGs) provide only coarse readings of neural signals, limiting their functionality. Directly implanting electrodes in the brain can provide a much clearer connection, but such risky medical procedures are hard to justify for all but the most serious conditions.

California-based startup Science Corporation thinks that an implant using living neurons to connect to the brain could better balance safety and precision. In recent non-peer-reviewed research posted on bioarXiv, the group showed a prototype device could connect with the brains of mice and even let them detect simple light signals.