Toggle light / dark theme

Organ chips get smart and go electric

Organs-on-Chips (Organ Chips) are emerging as powerful tools that allow researchers to study the physiology of human organs and tissues in ways not possible before. By mimicking normal blood flow, the mechanical microenvironment, and how different tissues physically interface with one another in living organs, they offer a more systematic approach to testing drugs than other in vitro methods that ultimately could help to replace animal testing.

As it can take weeks to grow human cells into intact differentiated and functional tissues within Organ Chips, such as those that mimic the lung and intestine, and researchers seek to understand how drugs, toxins or other perturbations alter tissue structure and function, the team at the Wyss Institute for Biologically Inspired Engineering led by Donald Ingber has been searching for ways to non-invasively monitor the health and maturity of cells cultured within these microfluidic devices over extended times.

It has been particularly difficult to measure changes in electrical functions of cells grown within Organ Chips that are normally electrically active, such as neuronal cells in the brain or beating heart cells, both during their differentiation and in response to drugs.

Neural Implant Tech Raises the Specter of Brainjacking

Fun in fiction. Perhaps not so much in reality.


The human mind is already pretty open to manipulation—just ask anyone who works in advertising. But neural implant technology could potentially open up a direct digital link to our innermost thoughts that could be exploited by hackers.

In recent months, companies like Elon Musk’s Neuralink, Kernel, and Facebook have unveiled plans to create devices that will provide a two-way interface between human brains and machines.

While these devices could undoubtedly bring many benefits, they would be networked to computers and therefore essentially part of the Internet of Things. That should immediately set off alarm bells for anyone paying attention to cybersecurity news.

The human brain sees the world as an 11-dimensional multiverse

New research suggests that the human brain is almost beyond comprehension because it doesn’t process the world in two dimensions or even three. No, the human brain understands the visual world in up to 11 different dimensions.

The astonishing discovery helps explain why even cutting-edge technologies like functional MRIs have such a hard time explaining what is going on inside our noggins. In a functional MRI, brain activity is monitored and represented as a three-dimensional image that changes over time. However, if the brain is actually working in 11 dimensions, looking at a 3D functional MRI and saying that it explains brain activity would be like looking at the shadow of a head of a pin and saying that it explains the entire universe, plus a multitude of other dimensions.

The team of scientists led by a group from Scientists at the École Polytechnique Fédérale de Lausanne in Switzerland detected the previously unknown complexities of the brain while working on the Blue Brain Project. The project’s goal is to create a biologically accurate recreation of the human brain.

Therapeutic Mind Control Worked In Rats. Are Humans Next?

B rain surgery is one of the most delicate, invasive procedures in medicine. Many times, anesthesia is not involved; sometimes, an electrode is inserted into the brain for deep brain stimulation.

Research published Thursday in the journal Cell promises a safer alternative to these otherwise intrusive ways to get in your head: stimulating neurons deep in the brain without any invasive procedures. The procedure, called temporal interference stimulation, is the latest invention of MIT neuroscientist and engineer Edward Boyden.

“Brief stimulation of the brain can actually cause the brain to clean up the amyloid plaques that are a hallmark of Alzheimer’s Disease,” Boyden tells Inverse. He feels that his new technology can help with a number of neurological conditions without many of the hazards inherent to invasive techniques.

IBM squeezes 30 billion transistors into a fingernail-sized chip

Who said Moore’s Law was dead? Certainly not IBM or its chip partners Globalfoundries and Samsung. The trio has developed a transistor manufacturing process that should pave the way for 5-nanometer chips. While the team etched the chip using the same extreme ultraviolet lithography (EUV) used for the breakthrough 7nm chip, it ditched the common FinFET (fin field effect) transistor design in favor of stacks of silicon nanosheets. The switch makes it possible to fine-tune individual circuits to maximize their performance as they’re crammed into an incredibly small space. How small? At 5nm, the group says it can squeeze 30 billion transistors into a chip the size of a fingernail (see below) — not bad when the 7nm chip held 20 billion transistors a couple of years ago.

IBM sees the technique helping its own cognitive computing efforts as well as the Internet of Things and other “data-intensive” tasks. However, it’s also painting a rosy picture for the future of mobile devices — it imagines phones having “two to three times” more battery life than current devices. That’s likely optimistic (phone makers tend to focus on speed over longevity), but it won’t be shocking if future hardware is both faster and wrings out a little more from every charge.

Just don’t expect to see real-world examples of this for a while. We haven’t even seen devices shipping with 7nm chips (they’re not expected until 2018 at the earliest), so it could easily be a couple of years or more before 5nm arrives. Still, that 5nm is even on the roadmap is important. Chip designers won’t have to reinvent the wheel to get meaningful improvements, and you won’t have to worry about device performance growing stale for at least the next few years.

Playing a musical instrument could help restore brain health, research suggests

Tibetan singing bowl (credit: Baycrest Health Sciences)

A study by neuroscientists at Toronto-based Baycrest Rotman Research Institute and Stanford University involving playing a musical instrument suggests ways to improve brain rehabilitation methods.

In the study, published in the Journal of Neuroscience on May 24, 2017, the researchers asked young adults to listen to sounds from an unfamiliar musical instrument (a Tibetan singing bowl). Half of the subjects (the experimental group) were then asked to recreate the same sounds and rhythm by striking the bowl; the other half (the control group) were instead asked to recreate the sound by simply pressing a key on a computer keypad.

US company to start trials ‘reawakening the dead’ in Latin America

The first attempts to bring people back from the dead are slated to start this year.

Bioquark, a Philadelphia-based company, announced in late 2016 that they believe brain death is not ‘irreversible’.

And now, CEO Ira Pastor has revealed they will soon be testing an unprecedented stem cell method on patients in an unidentified country in Latin America, confirming the details in the next few months.