Toggle light / dark theme

Israeli 3D printing startup pivots to print stem cells

In an unusual move Nano Dimension, an Israeli company called focused on printing electricity-conducting nano-material ink, is expanding into the biotech sector.

Israel-Flag-Small Gedalyah Reback 1 day ago.

Nano Dimension, a 3D bioprinting company located in Ness Ziona, Israel, has successfully tested a prototype for a new type of printer that uses stem cells to produce 3D models. The trial was done in conjunction with Haifa-based Accellta.

Light Can ‘heal’ Defects in New Solar Cell Materials

A family of compounds known as perovskites, which can be made into thin films with many promising electronic and optical properties, has been a hot research topic in recent years. But although these materials could potentially be highly useful in applications such as solar cells, some limitations still hamper their efficiency and consistency.

Now, a team of researchers at MIT and elsewhere say they have made significant inroads toward understanding a process for improving perovskites’ performance, by modifying the material using intense light. The new findings are being reported in the journal Nature Communications, in a paper by Samuel Stranks, a researcher at MIT; Vladimir Bulovic, the Fariborz Maseeh (1990) Professor of Emerging Technology and associate dean for innovation; and eight colleagues at other institutions in the U.S. and the U.K. The work is part of a major research effort on perovskite materials being led by Stranks, within MIT’s Organic and Nanostructured Electronics Laboratory.

Tiny defects in perovskite’s crystalline structure can hamper the conversion of light into electricity in a solar cell, but “what we’re finding is that there are some defects that can be healed under light,” says Stranks, who is a Marie Curie Fellow jointly at MIT and Cambridge University in the U.K. The tiny defects, called traps, can cause electrons to recombine with atoms before the electrons can reach a place in the crystal where their motion can be harnessed.

Nanotechnology could enable use of Solar Energy at night

Using the power of nano to solar power our homes at night.


MIT researchers have built a new experimental solar cell which could greatly enhance power efficiency. The “Shockley-Queisser’ limit is the estimated maximum efficiency of a solar cell, which is commonly about 32%; that means almost 70% of energy is wasted in the form of heat.

One way to reduce energy loss is by stacking cells. However if sunlight could be turned into heat and then be re-emitted as light, the solar cells could utilize more energy. Solar cells work best with visible light which occurs midway of the radiation spectrum. As a result the radiations with shorter and greater wavelengths usually go to waste.

The researchers at MIT have developed a structure of carbon nano-tubes that will function between the sun and solar cell. These carbon nano-tubes are very good absorbents of light (all types of radiation) and convert it to heat; heat is easier to store unlike light.

Top international award for UNSW Australia quantum computing chief

Love this; Congrats to Michelle Simmons and her work on QC — Superstar females in STEM.


For her world-leading research in the fabrication of atomic-scale devices for quantum computing, UNSW Australia’s Scientia Professor Michelle Simmons has been awarded a prestigious Foresight Institute Feynman Prize in Nanotechnology.

Two international Feynman prizes, named in honour of the late Nobel Prize winning American physicist Richard Feynman, are awarded each year in the categories of theory and experiment to researchers whose work has most advanced Feynman’s nanotechnology goal of molecular manufacturing.

Professor Simmons, director of the UNSW-based Australian Research Council Centre of Excellence for Quantum Computation and Communication Technology, won the experimental prize for her work in “the new field of atomic-electronics, which she created”.

Powering nanotechnology with the world’s smallest engine

More information on ANTs.


In the minuscule world of nanotechnology, big steps are rare. But a recent development has the potential to massively improve our lives: an engine measuring 200 billionths of a metre, which could power tiny robots to fight diseases in living cells.

Life itself is proof of the extreme effectiveness of nanotechnology — the manipulation of matter on a molecular or atomic scale — in which DNA, proteins and enzymes can all be considered as machinery. In fact, researchers have managed to make micro-propellers using tiny strands of DNA. These strands can be stitched together so freely and precisely that the practise is known as “DNA origami”. However, DNA origami lacks force and operational speed (it takes time measurable in seconds), reducing its robotic function.

But we have now produced nano-engines that can be operated with beams of light to work pistons, pumps and valves. Made from bound together by a heat-sensitive chemical, our machines are strong, fast and simple to operate, making them extremely practical for future applications.

This self-healing material could solve many wearable woes

The physical limitations of existing materials are one of main problems when it comes to flexible electronics, be it wearables, medical or sports tech. If a flexible material breaks, it either stays broken, or if it has some self-healing properties it may continue to work, but not so well. However, a team from Penn State have creating a self-healing, flexible material that could be used inside electronics even after multiple breaks.

The main challenge facing researchers led by Professor Qing Wang, was ensuring that self-healing electronics could restore “a suite of functions”. The example used explains how a component may still retain electrical resistance, but lose the ability to conduct heat, risking overheating in a hypothetical wearable, which is never good. The nano-composite material they came up with was mechanically strong, resistant against electronic surges, thermal conductivity and whilst packing insulating properties. Despite being cut it in half, reconnecting the two parts together and healing at a higher temperature almost completely heals where the cut was made. The thin strip of material could also hold up to 200 grams of weight after recovering.

Theorists smooth the way to modeling quantum friction: New paradigm offers a strategy for solving one of quantum mechanics’ oldest problems

Princeton’s answer to Quantum friction.


Abstract: Theoretical chemists at Princeton University have pioneered a strategy for modeling quantum friction, or how a particle’s environment drags on it, a vexing problem in quantum mechanics since the birth of the field. The study was published in the Journal of Physical Chemistry Letters.

“It was truly a most challenging research project in terms of technical details and the need to draw upon new ideas,” said Denys Bondar, a research scholar in the Rabitz lab and corresponding author on the work.

Quantum friction may operate at the smallest scale, but its consequences can be observed in everyday life. For example, when fluorescent molecules are excited by light, it’s because of quantum friction that the atoms are returned to rest, releasing photons that we see as fluorescence. Realistically modeling this phenomenon has stumped scientists for almost a century and recently has gained even more attention due to its relevance to quantum computing.

Technique improves the efficacy of fuel cells: Research demonstrates a new phase transition from metal to ionic conductor

New and improve fuel cells.


Fuel cells, which generate electricity from chemical reactions without harmful emissions, have the potential to power everything from cars to portable electronics, and could be cleaner and more efficient than combustion engines. Abstract: Fuel cells, which generate electricity from chemical reactions without harmful emissions, have the potential to power everything from cars to portable electronics, and could be cleaner and more efficient than combustion engines.

/* */