Menu

Blog

Archive for the ‘nanotechnology’ category: Page 307

Aug 10, 2015

DARPA Deploys Programmable Nanoscale Switches for Next-Generation Electronics

Posted by in categories: computing, electronics, nanotechnology, neuroscience

The Defense Advanced Research Projects Agency (DARPA) website reports that two of DARPA’s Young Faculty Award (YFA) recipients have developed nanoscale electronic switches with reprogrammable features, similar to those at play in inter-neuron communication in the brain, which could find uses in next-generation reconfigurable electronic devices and brain-inspired computing.

Read more

Aug 4, 2015

A high-performance single-molecule diode

Posted by in categories: computing, nanotechnology

Researchers from Berkeley Lab and Columbia University have created the world’s highest-performance single-molecule diode, using a combination of gold electrodes (yellow) and a “TDO” molecule (purple, with molecular structure on the left) in propylene carbonate, an ionic solution (light blue). The circuit symbols on the right represent a battery and an ammeter (A) to measure current flow. (credit: Brian Capozzi et al./Nature Nanotechnology)

A team of researchers from Berkeley Lab and Columbia University has created “the world’s highest-performance single-molecule diode,” using a combination of gold electrodes and an ionic solution.

The diode’s rectification ratio (ratio of forward to reverse current at fixed voltage) is in excess of 200, “a record for single-molecule devices,” says Jeff Neaton, Director of the Molecular Foundry, a senior faculty scientist with Berkeley Lab’s Materials Sciences Division and the Department of Physics at the University of California Berkeley and a member of the Kavli Energy Nanoscience Institute at Berkeley (Kavli ENSI).

Read more

Aug 4, 2015

Millennium Project releases ’2015–16 State of the Future’ report

Posted by in categories: bioengineering, economics, energy, health, nanotechnology, robotics/AI

The Millennium Project released today its annual “2015–16 State of the Future” report, listing global trends on 28 indicators of progress and regress, new insights into 15 Global Challenges, and impacts of artificial intelligence, synthetic biology, nanotechnology and other advanced technologies on employment over the next 35 years.

“Another 2.3 billion people are expected to be added to the planet in just 35 years,” the report notes. “By 2050, new systems for food, water, energy, education, health, economics, and global governance will be needed to prevent massive and complex human and environmental disasters.”

Read more

Aug 2, 2015

Synthetic biology – the next big thing

Posted by in categories: biotech/medical, chemistry, nanotechnology

Synthetic biology programming microorganisms to perform some new functions. Genes are made out of DNA; synthetic biology involves inserting synthetic genes that might not have existed before into yeast and reprogramming them to make a new chemistry or things not made naturally by biology. Each gene codes for an enzyme. One can program a new set of enzymes and convert them to intermediate products. If you go through five or even 15 steps, you can get a final product – a polymer, a new drug – creating a chemical factory inside a cell. This is much better than nanotechnology, because in synthetic biology, we get down to molecular size…


Prof. Joseph Jacobson, a leading physicist at the Massachusetts Institute of Technology, is not only the inventor of e-ink but also a mover in creating artificial DNA to eventually cure diseases.

Read more

Jul 30, 2015

Graphene kirigami could lead to flexible, nanoscale machines

Posted by in categories: nanotechnology, physics

Cornell physicists found yet another use for graphene.

Read more

Jul 27, 2015

Super-elastic conducting fibers for artificial muscles, sensors, capacitors

Posted by in categories: electronics, nanotechnology

UT Dallas scientists have constructed novel fibers by wrapping sheets of tiny carbon nanotubes to form a sheath around a long rubber core. This illustration shows complex two-dimensional buckling, shown in yellow, of the carbon nanotube sheath/rubber-core fiber. The buckling results in a conductive fiber with super elasticity and novel electronic properties. (credit: UT Dallas Alan G. MacDiarmid Nanotech Institute)

An international research team based at The University of Texas at Dallas has made electrically conducting fibers that can be reversibly stretched to more than 14 times their initial length and whose electrical conductivity increases 200-fold when stretched.

Read more

Jul 20, 2015

Nanoscale light-emitting device has big profile

Posted by in categories: energy, nanotechnology

University of Wisconsin-Madison engineers have created a nanoscale device that can emit light as powerfully as an object 10,000 times its size. It’s an advance that could have huge implications for everything from photography to solar power.

Read more

Jun 26, 2015

Allegra Fuller Synder Talk at the 2015 IX Symposium

Posted by in categories: architecture, chemistry, education, engineering, nanotechnology, science, sustainability

Jun 23, 2015

Micro-tentacles for tiny robots can handle delicate objects like blood vessels

Posted by in categories: biotech/medical, futurism, nanotechnology, robotics/AI

We are quickly approaching the point at which medical (and industrial) nanotech lives up to the hype!

Read more

Jun 15, 2015

Creating DNA-based nanostructures without water

Posted by in categories: biotech/medical, futurism, nanotechnology

Three different DNA nanostructures assembled at room temperature in water-free glycholine (left) and in 75 percent glycholine-water mixture (center and right). The structures are (from left to right) a tall rectangle two-dimensional DNA origami, a triangle made of single-stranded tails, and a six-helix bundle three-dimensional DNA origami (credit: Isaac Gállego).

Read more