Toggle light / dark theme

Australia did it again! They have developed a chip for the nano-manipulation of light which establishes the NextGen of Optical Storage and processing.


An Australian research team has created a breakthrough chip for the nano-manipulation of light, paving the way for next gen optical technologies and enabling deeper understanding of black holes.

Led by Professor Min Gu at RMIT University in Melbourne, Australia, the team designed an integrated nanophotonic chip that can achieve unparalleled levels of control over the angular momentum (AM) of light.

The pioneering work opens new opportunities for using AM at a chip-scale for the generation, transmission, processing and recording of information, and could also be used to help scientists better understand the evolution and nature of black holes.

Nanostructured samples and materials can be efficiently and reliable characterized using Anton Paar’s SAXSpace small- and wide-angle X-ray scattering (SWAXS) system. Users can obtain the size, shape, and size distribution of nano-sized samples and particle domains with the help of the SAXSpace. The device is ideally suited for the analysis of colloidal, biological (Bio-SAXS), and isotropic samples.

The SWAXS system also has a wide selection of accurate and versatile sample stages to meet each SAXS application. Easy handling and automatic alignment facilitate smooth operation. With the unique combination of robust design, short measurement time, and high system uptime, the device not only provides superior WAXS or SAXS results but also ensures high sample throughput. These capabilities make SAXSpace ideally suited to explore nanostructure in various materials, including surfactants, pharmaceuticals, proteins, foods, polymers, and nanoparticles.

Key Features

The key features of the SAXSpace are as follows:

Read more

Nanomedicine has been something that many in tech expected to be a critical part of the healthcare landscape for over a decade. I am glad to see how quickly the technology is being adopted as part of bio-medical research and treatments for various diseases, etc.


NEW YORK, April 7, 2016 /PRNewswire/ — Nano-based science paving the precision medicine era.

The continued development of new treatments associated with the demographic trends and public health considerations is remarkable. Nanotechnology has been identified as one most relevant key enabling technologies of the last ten years, significantly impacting on many different biomedical developments in a broad spectrum of applications therapeutics, diagnostics, theranostics, medical imaging, regenerative medicine, life sciences research and biosciences, among many others. In fact, nanomedicine is present in all therapeutic areas, exhibiting a perceptible and extensive impact in the treatment and diagnosis of some most concerned diseases.

Read more

Rectenna Naval Optical 150928122542_1_540x360
A new kind of nanoscale rectenna (half antenna and half rectifier) can convert solar and infrared into electricity,
plus be tuned to nearly any other frequency as a detector.

Right now efficiency is only one percent, but professor Baratunde Cola and colleagues at the Georgia Institute of Technology (Georgia Tech, Atlanta) convincingly argue that they can achieve 40 percent broad spectrum efficiency (double that of silicon and more even than multi-junction gallium arsenide) at a one-tenth of the cost of conventional solar cells (and with an upper limit of 90 percent efficiency for single wavelength conversion).

It is well suited for mass production, according to Cola. It works by growing fields of carbon nanotubes vertically, the length of which roughly matches the wavelength of the energy source (one micron for solar), capping the carbon nanotubes with an insulating dielectric (aluminum oxide on the tethered end of the nanotube bundles), then growing a low-work function metal (calcium/aluminum) on the dielectric and voila–a rectenna with a two electron-volt potential that collects sunlight and converts it to direct current (DC).

“Our process uses three simple steps: grow a large array of nanotube bundles vertically; coat one end with dielectric; then deposit another layer of metal,” Cola told EE Times. “In effect we are using one end of the nanotube as a part of a super-fast metal-insulator-metal tunnel diode, making mass production potentially very inexpensive up to 10-times cheaper than crystalline silicon cells.”

Read more

Nice


Researchers have developed a new and highly efficient method for gene transfer. The technique, which involves culturing and transfecting cells with genetic material on an array of carbon nanotubes, appears to overcome the limitations of other gene editing technologies.

The device, which is described in a study published today in the journal Small, is the product of a collaboration between researchers at the University of Rochester Medical Center (URMC) and the Rochester Institute of Technology (RIT).

“This platform holds the potential to make the process more robust and decrease toxic effects, while increasing amount and diversity of genetic cargo we can deliver into ,” said Ian Dickerson, Ph.D., an associate professor in the Department of Neuroscience at the URMC and co-author of the paper.

Nice


BUFFALO, N.Y. (WIVB) – The number of people being diagnosed with diabetes is growing. Every third American adult will develop type 2 diabetes within the next 35 years. But there may be a new way to manage the illness.

A new device might make managing your insulin levels or even treating allergies virtually painless. We know Western New York is becoming a hub for nano-medicine. Now a local organization is on the front lines of whats called nano- patch technology.

At the New York Center for Nanomedicine Research in downtown Buffalo, the team is working on patch technology. A similar kind of patch may soon be on the market. It uses nano- technology micro-needles to transmit medication and test blood sugar levels through the device is so small, you don’t even feel them. Scottpatrick Sellitto was part of the original team which developed nano-patch technology. He and his team say this “personalized” treatment is what’s next in the medical field. Selitto said, “It’s very precise, and it’s tailored literally just for you and that is the next frontier of medicine.”

The efficiency of many applications deriving from natural sciences depends dramatically on a finite-size property of nanoparticles, so-called surface-to-volume ratio. The larger the surface of nanoparticles for the same volume is achieved, the more efficiently nanoparticles can interact with the surrounding substance. However, thermodynamic equilibrium forces nanostructures to minimize open surface driven by energy minimization principle. This basic principle predicts that the only shape of nanoparticles can be spherical or close-to-spherical ones.

Nature, however, does not always follow the simple principles. An intensive collaboration between University of Helsinki, Finland, and Okinawa Institute of Science and Technology, Japan, showed that in some condition iron nanoparticles can grow in cubic shape. The scientists also succeeded in disclosing the mechanisms behind this.

“Now we have a recipe how to synthesize cubic shapes with high surface-to-volume ratio which opens the door for practical applications”, says Dr. Flyura Djurabekova from the University of Helsinki.

Read more