Toggle light / dark theme

The Government Is Serious About Creating Mind-Controlled Weapons

DARPA, the Department of Defense’s research arm, is paying scientists to invent ways to instantly read soldiers’ minds using tools like genetic engineering of the human brain, nanotechnology and infrared beams. The end goal? Thought-controlled weapons, like swarms of drones that someone sends to the skies with a single thought or the ability to beam images from one brain to another.

This week, DARPA (Defense Advanced Research Projects Agency) announced that six teams will receive funding under the Next-Generation Nonsurgical Neurotechnology (N3) program. Participants are tasked with developing technology that will provide a two-way channel for rapid and seamless communication between the human brain and machines without requiring surgery.

“Imagine someone who’s operating a drone or someone who might be analyzing a lot of data,” said Jacob Robinson, an assistant professor of bioengineering at Rice University, who is leading one of the teams. [DARPA’s 10 Coolest Projects: From Humanoid Robots to Flying Cars].

Read more

Breaking Down Iron Man’s New Avengers: Endgame Suit

Tony Stark (Robert Downey Jr.) is nothing if not a master innovator. After every single battle he’s had in the Marvel Cinematic Universe, the character has used his book smarts and technical wherewithal to better his suit so that it can defend against any threat the Avengers may run into. That includes the introduction of yet another suit in Avengers: Endgame after his first nano-tech based armor was destroyed in the Battle of Titan that took place in Avengers: Infinity War.

Weta Digital was the team behind crafting Stark’s layered nano-tech armor in addition to the third-act Endgame battle where we saw the majority of its capabilities. Recently, we had the chance to speak with Weta’s visual effects supervisor Matt Aitken, who helped detail what all went into making the latest iteration of Iron Man armor.

“Here in Infinity War, and then subsequently in Endgame, he’s got the Bleeding Edge nano-tech that he’s developed,” Aitken recounts.” And that’s about this idea that the suit is actually made up of these nanoparticles that can kind of form a fluid and move around on the surface of the suit, and reform different weapons, and then kind of solidify and crystallize into a rigid, metal suit. We developed that tech for Infinity War, and then really extended it for Endgame for two particular sequences.”

Read more

Extraordinarily transparent compact metallic metamaterials

In materials science, achromatic optical components can be designed with high transparency and low dispersion. Materials scientists have shown that although metals are highly opaque, densely packed arrays of metallic nanoparticles with more than 75 percent metal by volume can become more transparent to infrared radiation than dielectrics such as germanium. Such arrays can form effective dielectrics that are virtually dispersion-free across ultra-broadband ranges of wavelengths to engineer a variety of next-generation metamaterial-based optical devices.

Scientists can tune the local refractive indices of such by altering the size, shape and spacing of to design gradient-index lenses that guide and on the microscale. The can be strongly concentrated in the gaps between metallic nanoparticles for the simultaneous focusing and ‘squeezing’ of the dielectric field to produce strong, doubly enhanced hotspots. Scientists can use these hotspots to boost measurements made using infrared spectroscopy and other non-linear processes across a broad frequency range.

In a recent study now published in Nature Communications, Samuel J. Palmer and an interdisciplinary research team in the departments of Physics, Mathematics and Nanotechnology in the U.K., Spain and Germany, showed that artificial dielectrics can remain highly transparent to infrared radiation and observed this outcome even when the particles were nanoscopic. They demonstrated the electric field penetrates the particles (rendering them imperfect for conduction) for strong interactions to occur between them in a tightly packed arrangement. The results will allow materials scientists to design optical components that are achromatic for applications in the mid-to-infrared wavelength region.

Read more

Common food additive E171 found to affect gut microbiota

University of Sydney research provides new evidence that nanoparticles, which are present in many food items, may have a substantial and harmful influence on human health.

The study investigated the impacts of food additive E171 ( nanoparticles) which is commonly used in high quantities in foods and some medicines as a whitening agent. Found in more than 900 such as chewing gum and mayonnaise, E171 is consumed in high proportion everyday by the .

Published in Frontiers in Nutrition, the mice study found that consumption of food containing E171 has an impact on the gut microbiota (defined by the trillions of bacteria that inhabit the gut) which could trigger diseases such as inflammatory bowel diseases and colorectal cancer.

Read more

Common food additive found to affect gut microbiota

University of Sydney research provides new evidence that nanoparticles, which are present in many food items, may have a substantial and harmful influence on human health.

The study investigated the health impacts of food additive E171 (titanium dioxide nanoparticles) which is commonly used in high quantities in foods and some medicines as a whitening agent. Found in more than 900 food products such as chewing gum and mayonnaise, E171 is consumed in high proportion everyday by the general population.

Published in Frontiers in Nutrition, the mice study found that consumption of food containing E171 has an impact on the gut microbiota (defined by the trillions of bacteria that inhabit the gut) which could trigger diseases such as inflammatory bowel diseases and colorectal cancer.

Read more

/* */