Toggle light / dark theme

Retinal Prosthesis Grants Artificial Vision to Blind Mice and Enables

A groundbreaking advancement in the field of vision restoration has recently emerged from the intersection of nanotechnology and biomedical engineering. Researchers have developed a novel retinal prosthesis constructed from tellurium nanowires, which has demonstrated remarkable efficacy in restoring vision to blind animal models. This innovative approach not only aims to restore basic visual function but also enhances the eye’s capability to detect near-infrared light, a development that holds promising implications for future ocular therapies.

The retina, a thin layer of tissue at the back of the eye, plays a crucial role in converting light into the electrical signals sent to the brain. In degenerative conditions affecting the retina, such as retinitis pigmentosa or age-related macular degeneration, this process is severely disrupted, ultimately leading to blindness. Traditional treatments have struggled with limitations such as electrical interference and insufficient long-term impacts. However, the introduction of a retinal prosthesis made from tellurium offers a fresh perspective on restoring vision.

Tellurium is a unique element known for its semiconductor properties, making it an excellent choice for developing nanostructured devices. The researchers carefully engineered tellurium nanowires and then integrated them into a three-dimensional lattice framework. This novel architecture facilitates easy implantation into the retina while enabling efficient conversion of both visible and near-infrared light into electrical impulses. By adopting this approach, the researchers ensured that the prosthesis would function effectively in various lighting conditions, a significant consideration for practical application in real-world scenarios.

Laser-induced graphene enables greener, flexible hybrid circuit manufacturing

Boise State University researchers have unveiled a cutting-edge approach to manufacturing flexible hybrid circuits—reducing costs, waste, and environmental impact. Their work leverages the properties of laser-induced graphene and was recently featured on the cover of Advanced Materials Technologies.

Laser-induced graphene uses a single-step laser manufacturing process that converts carbon-rich materials into a 3-dimensional conductive and porous structure with some regions of atomically thin graphene. This technique is scalable, cost-effective, and patternable, making it ideal for applications in electronics, sensing, and energy storage.

In this work, the researchers used palladium (Pd) nanoparticles embedded in a polymer matrix to form Pd functionalized laser-induced graphene. These Pd nanoparticles act as seed crystals for the electroless deposition of copper on the LIG scaffold, thus forming copper interconnects for flexible printed circuit boards (f-PCBs) through a laser-enabled additive manufacturing process.

Scientists steer single atoms on magnetic surfaces for first time

Scientists in Germany have achieved a world first by moving individual atoms from one position to a precisely defined final one using magnetism, unlocking the potential for controlled atomic motion in nanotechnology and data storage.

The research team from the University of Kiel (CAU) and the University of Hamburg used a highly sensitive scanning tunneling microscope (STM) to manipulate atoms on a specially engineered magnetic surface.

New quantum battery design promises nanoscale energy storage

In the coming years, batteries so tiny yet powerful could revolutionize everything from smartphones to supercomputers.

Energy storage is about to take a massive leap forward, with the new concept of “topological quantum battery” at the forefront.

A theoretical study by researchers at the RIKEN Center for Quantum Computing and Huazhong University of Science and Technology has shown how to efficiently design a quantum battery.

Redefining physics to roll a ball vertically

Researchers from the University of Waterloo have achieved a feat previously thought to be impossible—getting a sphere to roll down a totally vertical surface without applying any external force.

The spontaneous rolling motion, captured by high-speed cameras, was an unexpected observation after months of trial, error, and theoretical calculations by two Waterloo research teams.

“When we first saw it happening, we were frankly in disbelief,” said Dr. Sushanta Mitra, a professor of mechanical and mechatronics engineering and executive director of the Waterloo Institute for Nanotechnology.

Towards topological quantum batteries: Theoretical framework addresses two long-standing challenges

Researchers from the RIKEN Center for Quantum Computing and Huazhong University of Science and Technology have conducted a theoretical analysis demonstrating how a “topological quantum battery”—an innovative device that leverages the topological properties of photonic waveguides and quantum effects of two-level atoms—could be efficiently designed. The work, published in Physical Review Letters, holds promise for applications in nanoscale energy storage, optical quantum communication, and distributed quantum computing.

With increasing global awareness of the importance of environmental sustainability, developing next-generation storage devices has become a critical priority. Quantum batteries—hypothetical miniature devices that, unlike classical batteries that store energy via chemical reactions, rely on quantum properties such as superposition, entanglement, and coherence—have the potential to enhance the storage and transfer of energy.

From a mechanistic perspective, they offer potential performance advantages over classical batteries, including improved charging power, increased capacity, and superior work extraction efficiency.

Promising breakthroughs in amyotrophic lateral sclerosis treatment through nanotechnology’s unexplored frontier

This review explores the transformative potential of nanotechnology in the treatment and diagnosis of amyotrophic lateral sclerosis (ALS), a progressive neurodegenerative disorder characterized by motor neuron degeneration, muscle weakness, and eventual paralysis. Nanotechnology offers innovative solutions across various domains, including targeted drug delivery, neuroprotection, gene therapy and editing, biomarker detection, advanced imaging techniques, and tissue engineering. By enhancing the precision and efficacy of therapeutic interventions, nanotechnology facilitates key advancements such as crossing the blood-brain barrier, targeting specific cell types, achieving sustained therapeutic release, and enabling combination therapies tailored to the complex pathophysiology of ALS.

Humans will achieve immortality by 2030, says futurist

We are currently facing the possibility of achieving immortality for humans by 2030. This prediction comes from renowned futurist Ray Kurzweil, who has a history of making accurate predictions. He anticipates that with the ongoing progress in genetics, robotics, and nanotechnology, we will soon have nanobots coursing through our bloodstream, which could enable us to live forever. It’s truly remarkable to consider that this could be a reality within just seven years.

Nanobots, which are small robots sized between 50–100 nm in width, are currently being used in various clinical medical applications. They are used in research as DNA probes, imaging materials for cells, and targeted delivery vehicles for cells. According to Kurzweil, nanobots represent the future of medicine.

They will be capable of repairing our bodies at a cellular level, making us resistant to diseases, aging, and, ultimately death. Additionally, he theorizes that humans may be able to transfer their consciousness into digital form, leading to immortality.

Exotic vibrations in new materials: New insights show universal applicability of carbyne as a sensor

For the design of future materials, it is important to understand how the individual atoms inside a material interact with each other quantum mechanically. Previously inexplicable vibrational states between carbon chains (carbyne) and nanotubes have puzzled materials scientists.

Researchers from Austria, Italy, France, China and Japan led by the University of Vienna have now succeeded in getting to the bottom of this phenomenon with the help of Raman spectroscopy, innovative theoretical models and the use of machine learning. The results, published in Nature Communications, show the universal applicability of as a sensor due to its sensitivity to external influences.

For the design of future materials, it is important to understand how matter interacts on an atomic scale. These quantum mechanical effects determine all macroscopic properties of matter, such as electrical, magnetic, optical or . In experiments, scientists use Raman spectroscopy, in which light interacts with matter, to determine the vibrational eigenstates of the atomic nuclei of the samples.

/* */