Menu

Blog

Archive for the ‘nanotechnology’ category: Page 173

Mar 31, 2019

Quantum optical cooling of nanoparticles

Posted by in categories: nanotechnology, particle physics, quantum physics

When a particle is completely isolated from its environment, the laws of quantum physics start to play a crucial role. One important requirement to see quantum effects is to remove all thermal energy from the particle motion, i.e. to cool it as close as possible to absolute zero temperature. Researchers at the University of Vienna, the Austrian Academy of Sciences and the Massachusetts Institute of Technology (MIT) are now one step closer to reaching this goal by demonstrating a new method for cooling levitated nanoparticles. They now publish their results in the renowned journal Physical Review Letters.

Tightly focused can act as optical “tweezers” to trap and manipulate tiny objects, from glass to living cells. The development of this method has earned Arthur Ashkin the last year’s Nobel prize in physics. While most experiments thus far have been carried out in air or liquid, there is an increasing interest for using to trap objects in ultra-high vacuum: such isolated particles not only exhibit unprecedented sensing performance, but can also be used to study fundamental processes of nanoscopic heat engines, or phenomena involving large masses.

A key element in these research efforts is to obtain full control over the particle motion, ideally in a regime where the laws of quantum physics dominate its behavior. Previous attempts to achieve this, have either modulated the optical tweezer itself, or immersed the particle into additional light fields between highly reflecting mirror configurations, i.e. optical cavities.

Continue reading “Quantum optical cooling of nanoparticles” »

Mar 29, 2019

Schwarzites: Long-sought carbon structure joins graphene, fullerene family

Posted by in categories: materials, nanotechnology

UC Berkeley chemists have proved that three carbon structures recently created by scientists in South Korea and Japan are in fact the long-sought schwarzites, which researchers predict will have unique electrical and storage properties like those now being discovered in buckminsterfullerenes (buckyballs or fullerenes for short), nanotubes and graphene.

The new structures were built inside the pores of zeolites, crystalline forms of silicon dioxide – sand – more commonly used as water softeners in laundry detergents and to catalytically crack petroleum into gasoline. Called zeolite-templated carbons (ZTC), the structures were being investigated for possible interesting properties, though the creators were unaware of their identity as schwarzites, which theoretical chemists have worked on for decades.

Continue reading “Schwarzites: Long-sought carbon structure joins graphene, fullerene family” »

Mar 29, 2019

Activity and pharmacology of homemade silver nanoparticles in refractory metastatic head and neck squamous cell cancer

Posted by in categories: biotech/medical, nanotechnology

E-mail address: [email protected]

https://orcid.org/0000-0002-3440-9774

Department of internal medicine, UT southwestern medical center, dallas, texas.

Read more

Mar 27, 2019

Graphene-based brain implant reveals secrets inside the brain

Posted by in categories: computing, nanotechnology, neuroscience

A new graphene-based brain implant could help provide information about the onset and progression of epileptic seizures and pave the way for next generation brain-computer interfaces.

The new implant, which records electrical activity in the brain over large areas and at frequencies below 0.1Hz, is said to overcome the limitations of electrode arrays that have only been able to detect activity over a certain frequency threshold.

The technology was developed by Graphene Flagship partners at the Barcelona Microelectronics Institute (IMB-CNM, CSIC), the Catalan Institute of Nanoscience and Nanotechnology (ICN2), and ICFO.

Read more

Mar 24, 2019

A New Must-Read Book on the AI Singularity from Barnes & Noble

Posted by in categories: cosmology, engineering, information science, nanotechnology, quantum physics, robotics/AI, singularity

Hot off the press…


Barnes & Noble Press releases a new non-fiction book The Syntellect Hypothesis: Five Paradigms of the Mind’s Evolution by Alex M. Vikoulov as Hardcover (Press Release, San Francisco, CA, USA, March 22, 2019 11.00 AM PST)

Named “The Book of the Year” by futurists and academics alike, “# 1 Hot New Release” in Amazon charts in Physics of Time, Phenomenology, and Phenomenological Philosophy, the book has now been released by Barnes & Noble Press as hardcover in addition to ebook and paperback released earlier this year. In one volume, the author covers it all: from quantum physics to your experiential reality, from the Big Bang to the Omega Point, from the ‘flow state’ to psychedelics, from ‘Lucy’ to the looming AI Singularity, from natural algorithms to the operating system of your mind, from geo-engineering to nanotechnology, from anti-aging to immortality technologies, from oligopoly capitalism to Star-Trekonomics, from the Matrix to Universal Mind, from Homo sapiens to Holo syntellectus.

Continue reading “A New Must-Read Book on the AI Singularity from Barnes & Noble” »

Mar 21, 2019

Scientists have found a way to levitate objects with light

Posted by in categories: nanotechnology, space travel

Turns out the key to making things lighter than air is…light!

California scientists think they’ve found a way to make objects levitate using concentrated light — a theory that could even propel spacecraft farther than they’ve ever traveled before, according to a report.

Researchers at the California Institute of Technology believe that by covering the surfaces of objects with microscopic nanoscale patterns specially designed to interact with beams of light, they could be propelled without fuel — and potentially by light sources millions of miles away, according to Phys.org.

Continue reading “Scientists have found a way to levitate objects with light” »

Mar 20, 2019

Levitating objects with light

Posted by in categories: engineering, nanotechnology, space travel

Researchers at Caltech have designed a way to levitate and propel objects using only light, by creating specific nanoscale patterning on the objects’ surfaces.

Though still theoretical, the work is a step toward developing a spacecraft that could reach the nearest planet outside of our solar system in 20 years, powered and accelerated only by light.

A paper describing the research appears online in the March 18 issue of the journal Nature Photonics. The research was done in the laboratory of Harry Atwater, Howard Hughes Professor of Applied Physics and Materials Science in Caltech’s Division of Engineering and Applied Science.

Read more

Mar 20, 2019

One transistor for all purposes

Posted by in categories: computing, economics, nanotechnology, physics

In mobiles, fridges, planes – transistors are everywhere. But they often operate only within a restricted current range. LMU physicists have now developed an organic transistor that functions perfectly under both low and high currents.

Transistors are that control voltage and currents in electrical circuits. To reduce economic and , must become smaller and more effective. This applies above all to transistors. In the field of inorganic semiconductors, dimensions below 100 nanometers are already standard. In this respect, organic semiconductors have not been able to keep up. In addition, their performance with regard to charge-carrier transport is considerably worse. But organic structures offer other advantages. They can easily be printed on an , the material costs are lower, and they can be transparently applied to flexible surfaces.

Thomas Weitz, a professor in LMU’s Faculty of Physics and a member of the Nanosystems Initiative Munich, and his team are working intensively on the optimization of organic transistors. In their latest publication in Nature Nanotechnology, they describe the fabrication of transistors with an unusual structure, which are tiny, powerful and above all versatile. By carefully tailoring a small set of parameters during the , they have been able to design nanoscale devices for high or low current densities. The primary innovation lies in the use of an atypical geometry, which also facilitates assembly of the nanoscopic transistors.

Read more

Mar 19, 2019

A Real World ‘Star Trek’ Replicator Is Now Possible Thanks To New Breakthrough

Posted by in categories: 3D printing, energy, nanotechnology

A startup with alumni from MIT and Yale says it’s made a breakthrough in creating a next-generation material that should make it possible to 3D print literally anything out of thin air.

New York-based Mattershift has managed to create large-scale carbon nanotube (CNT) membranes that are able to combine and separate individual molecules.

“This technology gives us a level of control over the material world that we’ve never had before,” said Mattershift Founder and CEO Dr. Rob McGinnis in a release. “For example, right now we’re working to remove CO2 from the air and turn it into fuels. This has already been done using conventional technology, but it’s been too expensive to be practical. Using our tech, I think we’ll be able to produce carbon-zero gasoline, diesel, and jet fuels that are cheaper than fossil fuels.”

Continue reading “A Real World ‘Star Trek’ Replicator Is Now Possible Thanks To New Breakthrough” »

Mar 16, 2019

Scientists Thread A Nano-Needle To Modify The Genes Of Plants

Posted by in categories: biotech/medical, genetics, nanotechnology

Carbon Nanotubes May Be An Easy Way To Tinker With Plant Genetics Getting DNA into plant cells is tricky. Researchers have tried using infectious bacteria, as well as gene guns that shoot gold bullets. Then a physicist came up with a new approach almost by accident.

Read more