Menu

Blog

Archive for the ‘mathematics’ category: Page 74

Jun 14, 2022

Found: A Quadrillion Ways for String Theory to Make Our Universe

Posted by in categories: mathematics, particle physics, quantum physics

Circa 2019


According to string theory, all particles and fundamental forces arise from the vibrational states of tiny strings. For mathematical consistency, these strings vibrate in 10-dimensional spacetime. And for consistency with our familiar everyday experience of the universe, with three spatial dimensions and the dimension of time, the additional six dimensions are “compactified” so as to be undetectable.

Different compactifications lead to different solutions. In string theory, a “solution” implies a vacuum of spacetime that is governed by Einstein’s theory of gravity coupled to a quantum field theory. Each solution describes a unique universe, with its own set of particles, fundamental forces and other such defining properties.

Continue reading “Found: A Quadrillion Ways for String Theory to Make Our Universe” »

Jun 14, 2022

With a Twist: New Composite Materials With Highly Tunable Electrical and Physical Properties

Posted by in categories: mathematics, nanotechnology, particle physics, sustainability

Marianne StebbinsWhat does this solve that isn’t already handled by air and water?

5 Replies.

Anne KristoffersenTurn the Bering Strait Crossing into a bridge arcology and the project will handsomely pay for itself in a sustainable way.

Continue reading “With a Twist: New Composite Materials With Highly Tunable Electrical and Physical Properties” »

Jun 12, 2022

What Is Time? | Professor Sean Carroll explains the theories of Presentism and Eternalism

Posted by in categories: mathematics, physics

It’s said that the clock is always ticking, but there’s a chance that it isn’t. The theory of “presentism” states that the current moment is the only thing that’s real, while “eternalism” is the belief that all existence in time is equally real. Find out if the future is really out there and predictable—just don’t tell us who wins the big game next year.

This video is episode two from the series “Mysteries of Modern Physics: Time”, Presented by Sean Carroll.
Learn more about the physics of time at https://www.wondrium.com/YouTube.

Continue reading “What Is Time? | Professor Sean Carroll explains the theories of Presentism and Eternalism” »

Jun 12, 2022

Scientists Discover New Molecule That Kills Hard-to-Treat Cancers

Posted by in categories: biotech/medical, mathematics

A new molecule synthesized by a University of Texas at Dallas researcher kills a broad spectrum of hard-to-treat cancers, including triple-negative breast cancer, by exploiting a weakness in cells not previously targeted by other drugs.

A study describing the research — which was carried out in isolated cells, in human cancer tissue and in human cancers grown in mice — was published online June 2 in the journal Nature Cancer.

Dr. Jung-Mo Ahn, a co-corresponding author of the study and a UT Dallas associate professor of chemistry and biochemistry in the School of Natural Sciences and Mathematics, has been passionate about his work designing small molecules that target protein-protein interactions in cells for over a decade. Using an approach called structure-based rational drug design, he previously developed potential therapeutic candidate compounds for treatment-resistant breast cancer and for prostate cancer.

Jun 10, 2022

Room-temperature molecular switch discovery paves the way for faster computers, longer-lasting batteries

Posted by in categories: computing, mathematics, quantum physics

University of Queensland scientists have cracked a problem that’s frustrated chemists and physicists for years, potentially leading to a new age of powerful, efficient, and environmentally friendly technologies.

Using , Professor Ben Powell from UQ’s School of Mathematics and Physics has discovered a “recipe” which allows molecular switches to work at room temperature.

“Switches are materials that can shift between two or more states, such as on and off or 0 and 1, and are the basis of all digital technologies,” Professor Powell said. “This discovery paves the way for smaller and more powerful and energy efficient technologies. You can expect batteries will last longer and computers to run faster.”

Jun 10, 2022

Quantum computers proved to have ‘quantum advantage’ on some tasks

Posted by in categories: computing, mathematics, quantum physics

View insights.


Not only do quantum computers have the edge over classical computers on some tasks, but they are also exponentially faster, according to a new mathematical proof.

Jun 10, 2022

Quantum physics exponentially improves some types of machine learning

Posted by in categories: mathematics, quantum physics, robotics/AI

Machine learning can get a boost from quantum physics.

On certain types of machine learning tasks, quantum computers have an exponential advantage over standard computation, scientists report in the June 10 Science. The researchers proved that, according to quantum math, the advantage applies when using machine learning to understand quantum systems. And the team showed that the advantage holds up in real-world tests.

“People are very excited about the potential of using quantum technology to improve our learning ability,” says theoretical physicist and computer scientist Hsin-Yuan Huang of Caltech. But it wasn’t entirely clear if machine learning could benefit from quantum physics in practice.

Jun 6, 2022

Using mirrors, lasers and lenses to bend light into a vortex ring

Posted by in categories: information science, mapping, mathematics

A team of researchers from the University of Shanghai for Science and Technology and the University of Dayton has developed a way to bend light into a vortex ring using mirrors, lasers and lenses. In their study, published in the journal Nature Photonics, the group built on work done by other teams in which vortex rings were observed incidentally, and then mathematically designed a system that could generate them on demand.

In 2016, another team of researchers discovered that under the right circumstances, strong pulses of light swirling around a central pipe-shaped pulse, could sometimes form into a donut-shaped vortex. Intrigued by the finding, the researchers with this new effort began to wonder if it might be possible to create such on demand.

They started by studying the properties and conditions that had led to the formations observed by the team in 2016 and applied mathematics to the problem. They found solutions that appeared to show how such rings could be made—solutions to Maxwell’s equations, in particular, they found, could be used to generate the kind of conformal mapping required.

Jun 3, 2022

Angela Sheffield — AI For Defense Nuclear Nonproliferation — National Nuclear Security Admin (NNSA)

Posted by in categories: economics, mathematics, military, nuclear energy, policy, robotics/AI, space

AI For Defense Nuclear Nonproliferation — Angela Sheffield, Senior Program Manager, National Nuclear Security Administration, U.S. Department of Energy.


Angela Sheffield is a graduate student and Space Industry fellow at the National Defense University’s Eisenhower School. She is on detail from the National Nuclear Security Administration (NNSA), where she serves as the Senior Program Manager for AI for Defense Nuclear Nonproliferation Research and Development.

Continue reading “Angela Sheffield — AI For Defense Nuclear Nonproliferation — National Nuclear Security Admin (NNSA)” »

Jun 3, 2022

Electrons in a crystal found to exhibit linked and knotted quantum twists

Posted by in categories: climatology, mathematics, quantum physics

As physicists delve deeper into the quantum realm, they are discovering an infinitesimally small world composed of a strange and surprising array of links, knots and winding. Some quantum materials exhibit magnetic whirls called skyrmions—unique configurations described as “subatomic hurricanes.” Others host a form of superconductivity that twists into vortices.

Now, in an article published in Nature a Princeton-led team of physicists has discovered that electrons in can link to one another in strange new ways. The work brings together ideas in three areas of science—condensed matter physics, topology, and —in a new way, raising unexpected questions about the quantum properties of electronic systems.

Topology is the branch of theoretical mathematics that studies geometric properties that can be deformed but not intrinsically changed. Topological quantum states first came to the public’s attention in 2016 when three scientists, including Duncan Haldane, who is Princeton’s Thomas D. Jones Professor of Mathematical Physics and Sherman Fairchild University Professor of Physics, were awarded the Nobel Prize for their theoretical prediction of topology in electronic materials.

Page 74 of 142First7172737475767778Last