Toggle light / dark theme

Researchers at the universities of Valencia and Florence propose an approach to the experimental data generated by the Large Hadron Collider that solves the infinity problem without breaching the four dimensions of space-time.

The theories currently used to interpret the data emerging from CERN’s Large Hadron Collider (LHC), which have so far most notably led to the discovery of the Higgs boson, are poorly defined within the four dimensions of space-time established by Einstein in his Theory of Special Relativity. In order to avoid the infinities resulting from the calculations that these theories inspire, new dimensions are added in a mathematical trick which, although effective, does not reflect what we now know about our Universe.

Now though, a group of researchers at the Institute of Corpuscular Physics (IFIC, CSIC-UV) in Valencia has devised a way to side-step the infinity issue and keep the theory within the bounds of the four standard dimensions of space-time.

Read more

Nice.


There are many scientific and non-scientific varieties of the answer about what came before Big Bang. Some say there was literally nothing and some say a black hole or a multiverse. But now a group of mathematicians from Canada and Egypt have analyzed some cutting edge scientific theory and a complex set of equations to find what preceded the universe in which we live. Their research paper has been published in Nature.

To explain it in simple and easily understandable terms; they applied the theories of the very small i.e. the world of quantum mechanics, to the entire universe — explained by general theory of relativity, and discovered the universe essentially goes through four different phases.

Stockholm: The Nobel Physics prize was the second of the awards to be given away, on Tuesday, to a Birtish trio — scientists David Thouless, Duncan Haldane and Michael Kosterlitz for revealing the secrets of exotic matter.

Thouless, 82, is professor emeritus at the University of Washington in Seattle. Haldane, 65, is a professor at Princeton University, and Kosterlitz, born in 1942, teaches at Brown University in Providence, Rhode Island. The laureates will share the eight million Swedish kronor (around $931,000 or 834,000 euros) prize sum. Thouless won one-half of the prize, while Haldane and Hosterlitz share the other half.

“This year’s laureates opened the door on an unknown world where matter can assume strange states. They have used advanced mathematical methods to study unusual phases, or states, of matter, such as superconductors, superfluids or thin magnetic films. Thanks to their pioneering work, the hunt is now on for new and exotic phases of matter,” said the Nobel jury.

Read more

When the project started, a “Red Team” of hackers could have taken over the helicopter almost as easily as it could break into your home Wi-Fi. But in the intervening months, engineers from the Defense Advanced Research Projects Agency (DARPA) had implemented a new kind of security mechanism — a software system that couldn’t be commandeered. Key parts of Little Bird’s computer system were unhackable with existing technology, its code as trustworthy as a mathematical proof. Even though the Red Team was given six weeks with the drone and more access to its computing network than genuine bad actors could ever expect to attain, they failed to crack Little Bird’s defenses.

“They were not able to break out and disrupt the operation in any way,” said Kathleen Fisher, a professor of computer science at Tufts University and the founding program manager of the High-Assurance Cyber Military Systems (HACMS) project. “That result made all of DARPA stand up and say, oh my goodness, we can actually use this technology in systems we care about.”

The technology that repelled the hackers was a style of software programming known as formal verification. Unlike most computer code, which is written informally and evaluated based mainly on whether it works, formally verified software reads like a mathematical proof: Each statement follows logically from the next. An entire program can be tested with the same certainty that mathematicians prove theorems.

Read more

If I had to pick my least favorite subject in high school, it would be physics.

The concepts themselves were challenging. The math was even more challenging.

However, my views on physics quickly changed when my teacher mentioned the words “quantum mechanics.”

He refused to discuss it, saying it was beyond the scope of our class. However, my curiosity was piqued.

Read more

Researchers have developed a new technique to measure the density matrix—a more general way of characterizing the state of a quantum system than that provided by the wave function.

The wave function is the physicist’s usual choice to characterize the state of a quantum system. But a different mathematical object, called a density matrix, is required for systems that are in mixed states, which are a mixture of other, pure quantum states. An example of a pure state is a beam of horizontally or vertically polarized photons, whereas a mixed state would be an uncorrelated statistical mixture of both polarizations. A mixed state would also apply to a system quantum mechanically entangled with its environment. The density matrix provides a complete description of a mixed state, but it also applies to pure states. Usually, experimental measurements of density matrices are indirect reconstructions using data acquired from a series of different kinds of measurements.

Read more

(Phys.org)—Are time crystals just a mathematical curiosity, or could they actually physically exist? Physicists have been debating this question since 2012, when Nobel laureate Frank Wilczek first proposed the idea of time crystals. He argued that these hypothetical objects can exhibit periodic motion, such as moving in a circular orbit, in their state of lowest energy, or their “ground state.” Theoretically, objects in their ground states don’t have enough energy to move at all.

In the years since, other physicists have proposed various arguments for why the physical existence of is impossible—and most physicists do seem to think that time crystals are physically impossible because of their odd properties. Even though time crystals couldn’t be used to generate useful energy (since disturbing them makes them stop moving), and don’t violate the second law of thermodynamics, they do violate a fundamental of the laws of physics.

However, now in a new paper published in Physical Review Letters, physicists from the University of California, Santa Barbara (UCSB) and Microsoft Station Q (a Microsoft research lab located on the UCSB campus) have demonstrated that it may be possible for time crystals to physically exist.

Read more

Our friends at the Methuselah Foundation are working on macular degeneration.


Typically, a fellowship and participation in a research study to cure a major disease would occur years after completing undergrad, possibly even after earning a PhD. But Jennifer DeRosa is not a typical student.

As early as high school, DeRosa was already in the lab, conducting research in plant biotechnology at the College of Environmental Science and Forestry (SUNY-ESF) before graduating valedictorian from Skaneateles High School. As a freshman student at Onondaga Community College, she continued to develop skills in molecular biology, analytical chemistry, and cell biology. She logged over 1,600 hours in academic and industry laboratories while maintaining a perfect 4.0 GPA, completing her associate’s degree in Math and Science in only one year.

Although she had planned to continue to a bachelor’s program, DeRosa elected to defer enrollment after being offered a Methuselah Foundation research fellowship. “The fellowship provides distinguished students a year-long stipend to work in any laboratory of their choosing that conducts work on age-associated diseases,” said Methuselah Foundation CEO David Gobel. “We are very pleased that she chose to complete her fellowship at Ichor Therapeutics, where she has been working as a paid intern. Methuselah Foundation has a high degree of confidence in the quality and scope of work being conducted there.”

New research published in the New Journal of Physics tries to decompose the structural layers of the cortical network to different hierarchies enabling to identify the network’s nucleus, from which our consciousness could emerge.

The is a very complex network, with approximately 100 billion neurons and 100 trillion synapses between the neurons. In order to cope with its enormous complexity and to understand how brain function eventually creates the conscious mind, science uses advanced mathematical tools. Ultimately, scientists want to understand how a global phenomenon such as consciousness can emerge from our neuronal network.

A team of physicists from Bar Ilan University in Israel led by Professor Shlomo Havlin and Professor Reuven Cohen used network theory in order to deal with this complexity and to determine how the structure of the human cortical network can support complex data integration and . The gray area of the human cortex, the neuron cell bodies, were scanned with MRI imaging and used to form 1000 in the cortical network. The white matter of the human cortex, the neuron bundles, were scanned with DTI imaging, forming 15,000 links or edges that connected the network’s nodes. In the end of this process, their network was an approximation of the structure of the human cortex.

Read more