Toggle light / dark theme

The constant figures in other situations, making physicists wonder why. Why does nature insist on this number? It has appeared in various calculations in physics since the 1880s, spurring numerous attempts to come up with a Grand Unified Theory that would incorporate the constant since. So far no single explanation took hold. Recent research also introduced the possibility that the constant has actually increased over the last six billion years, even though slightly. If you’d like to know the math behind fine structure constant more specifically, the way you arrive at alpha is by putting the 3 constants h, c, and e together in the equation — As the units c, e, and h cancel each other out, the.

Read more

New research into a very weird type of ice known as Ice VII has revealed how it can form at speeds over 1,000 miles per hour (1,610 kilometres per hour), and how it might be able to spread across yet-to-be-explored alien worlds.

This ice type was only discovered occurring naturally in March, trapped inside diamonds deep underground, and this latest study looks in detail at how exactly it takes shape – apparently in a way that’s completely different to how water usually freezes into ice.

Based on a mathematical model devised by researchers from the Lawrence Livermore National Laboratory in California, there’s a certain pressure threshold across which Ice VII will spread with lightning speed. This process of near-instantaneous transformation is known as homogeneous nucleation.

Read more

Cancer is the poster child of age-related diseases, and a recent study sheds light on why the risk of cancer rises dramatically as we age.

Abstract

For many cancer types, incidence rises rapidly with age as an apparent power law, supporting the idea that cancer is caused by a gradual accumulation of genetic mutations. Similarly, the incidence of many infectious diseases strongly increases with age. Here, combining data from immunology and epidemiology, we show that many of these dramatic age-related increases in incidence can be modeled based on immune system decline, rather than mutation accumulation. In humans, the thymus atrophies from infancy, resulting in an exponential decline in T cell production with a half-life of ∼16 years, which we use as the basis for a minimal mathematical model of disease incidence. Our model outperforms the power law model with the same number of fitting parameters in describing cancer incidence data across a wide spectrum of different cancers, and provides excellent fits to infectious disease data.

Read more

If you replace classical bits with qubits, though, you go back to only needing one per spin in the system, because all the quantum stuff comes along for free. You don&s;t need extra bits to track the superposition, because the qubits themselves can be in superposition states. And you don&s;t need extra bits to track the entanglement, because the qubits themselves can be entangled with other qubits. A not-too-big quantum computer— again, 50–100 qubits— can efficiently solve problems that are simply impossible for a classical computer.

These sorts of problems pop up in useful contexts, such as the study of magnetic materials, whose magnetic nature comes from adding together the quantum spins of lots of particles, or some types of superconductors. As a general matter, any time you&s;re trying to find the state of a large quantum system, the computational overhead needed to do it will be much less if you can map it onto a system of qubits than if you&s;re stuck using a classical computer.

So, there&s;s your view-from-30,000-feet look at what quantum computing is, and what it&s;s good for. A quantum computer is a device that exploits wave nature, superposition, and entanglement to do calculations involving collective mathematical properties or the simulation of quantum systems more efficiently than you can do with any classical computer. That&s;s why these are interesting systems to study, and why heavy hitters like Google, Microsoft, and IBM are starting to invest heavily in the field.

Read more

Current brain-computer interface (BCI) research helps people who have lost the ability to affect their environment in ways many of us take for granted. Future BCIs may go beyond motor function, perhaps aiding with memory recall, decision-making, and other cognitive functions.


Have you ever studied a foreign language and wished you could upload the vocabulary lists directly into your brain so that you could retain them? Would you like to do mental math with the speed and accuracy of a calculator? Do you want a literal photographic memory? Well, these dreams are still the stuff of science fiction, but the brave new world of brain-computer interfaces, or BCI, is well on its way to making technological miracles of this sort a reality.

The story of BCI begins with the discovery of electrical signals emitted by the brain. In 1924, German scientist Hans Berger recorded the first electroencephalogram, or EEG, by placing electrodes under a person’s scalp. Although his research was at first met with derision, a whole new way to study the brain was born from his work. It is now well accepted that the human brain emits electric signals at a variety of frequencies currently known as brainwaves.

BCI researchers attempt to harness these signals to create some desired effect in the world outside the brain. In other words, BCI seeks to make things happen based on a thought in a person’s head. Actually, humans do this all the time when they decide to do anything. A person thinks, “I’m thirsty; I need a drink,” and then the brain sends a litany of instructions to the extremities that allows the person to pour a glass of water, lift it to their mouth, swallow the water, and so on. Most of us go through our days executing these kinds of actions, which require complex interaction between the body and brain, without giving them a second thought.

When listening to world science festival’s latest episode on youtube, Pondering the Imponderables: The Biggest Questions of Cosmology, I found myself to be most in line with George F.R. Ellis’ line of thinking overall.


Big Bang cosmology, chemical and biological evolutionary theory, and associated sciences have been extraordinarily successful in revealing and enabling us to understand the development of the.

Cosmology is today a precision science with masses of high quality data every increasing our understanding of the physical universe, but paradoxically theoretical cosmology is simultaneously.

By translating a key human physical dynamic skill — maintaining whole-body balance — into a mathematical equation, the team was able to use the numerical formula to program their robot Mercury, which was built and tested over the course of six years. They calculated the margin of error necessary for the average person to lose one’s balance and fall when walking to be a simple figure — 2 centimeters.

“Essentially, we have developed a technique to teach autonomous robots how to maintain balance even when they are hit unexpectedly, or a force is applied without warning,” Sentis said. “This is a particularly valuable skill we as humans frequently use when navigating through large crowds.”

Sentis said their technique has been successful in dynamically balancing both bipeds without ankle control and full humanoid robots.

Read more