Menu

Blog

Archive for the ‘materials’ category: Page 33

May 28, 2024

How to Put a Data Center in a Shoebox

Posted by in categories: materials, supercomputing

One way to manage the unsustainable energy requirements of the computing sector is to fundamentally change the way we compute. Superconductors could let us do just that.

Superconductors offer the possibility of drastically lowering energy consumption because they do not dissipate energy when passing current. True, superconductors work only at cryogenic temperatures, requiring some cooling overhead. But in exchange, they offer virtually zero-resistance interconnects, digital logic built on ultrashort pulses that require minimal energy, and the capacity for incredible computing density due to easy 3D chip stacking.

Are the advantages enough to overcome the cost of cryogenic cooling? Our work suggests they most certainly are. As the scale of computing resources gets larger, the marginal cost of the cooling overhead gets smaller. Our research shows that starting at around 10 16 floating-point operations per second (tens of petaflops) the superconducting computer handily becomes more power efficient than its classical cousin. This is exactly the scale of typical high-performance computers today, so the time for a superconducting supercomputer is now.

May 28, 2024

Researchers create dispersion-assisted photodetector to decipher high-dimensional light

Posted by in categories: materials, physics

Our is capable of demonstrating high spectral resolution and accurate reconstruction of full-Stokes polarization states in both theoretical and experimental settings. Precision detection of high-dimensional information by our photodetector, such as a two-color laser field with different polarization states or broadband reflection from a gold interface exhibiting varying states, is achieved beyond the capabilities of commercial polarimeter and spectrometer.

Additionally, this approach can be extended to imaging applications by sandwiching the film with a commercial microlens array and sensor array to realize ultra-compact high-dimensional imager, said Assistant Professor Chunqi Jin from the Changchun Institute of Optics, Fine Mechanics and Physics (CIOMP) of the Chinese Academy of Sciences.

Looking ahead, Prof. Wei Li envisions that ultra-broadband detection can be achieved by integrating broadband commercial photodetectors; the detection resolution can be further improved by using , metasurfaces, and two-dimensional materials instead of existing thin film schemes; and the detection capability can be stepped up in higher dimensions by integrating functionalities such as , and distance measurement.

May 27, 2024

Researchers discover a “fossil cloud” that hasn’t been contaminated since the Big Bang

Posted by in categories: cosmology, materials

Making use of some of the most powerful telescopes on the planet, astronomers have found an ancient remnant of the Big Bang. This small piece of pure material from the early universe may provide light on the processes and motivations behind the formation of various star and galaxy types.

Using telescopes at the W. M. Keck Obervatory in Hawaii, a team of astronomers led by Fred Robert and Michael Murphy of the Swinburne University of Technology in Australia discovered a cloud of gas leftover from the Big Bang that was hiding far out in the universe. Behind the cloud, the telescope also discovered a quasar, which is an extremely bright active galactic nucleus that emits a lot of energy.

May 27, 2024

Iron Could Be Key to Cheaper, Greener Lithium-Ion Batteries

Posted by in category: materials

What if a common element rather than scarce, expensive ones was a key component in electric car batteries?

A collaboration co-led by an Oregon State University chemistry researcher is hoping to spark a green battery revolution by showing that iron instead of cobalt and nickel can be used as a cathode material in lithium-ion batteries.

The findings, published today in Science Advances, are important for multiple reasons, Oregon State’s Xiulei “David” Ji notes.

May 27, 2024

Semiconductor advancement could lead to low-cost, flexible electronic devices

Posted by in categories: electronics, materials

The public’s appetite for inexpensive and powerful electronic devices continues to grow. While silicon-based semiconductors have been key to satiating this demand, a superior alternative could be wide-bandgap semiconductors. These materials, which operate at higher temperatures and handle increased power loads, are unfortunately very expensive.

May 26, 2024

New water batteries stay cool under pressure

Posted by in categories: energy, materials

A global team of researchers and industry collaborators led by RMIT University has invented recyclable ‘water batteries’ that won’t catch fire or explode.

Lithium-ion energy storage dominates the market due to its technological maturity, but its suitability for large-scale grid energy storage is limited by safety concerns with the volatile materials inside.

Continue reading “New water batteries stay cool under pressure” »

May 25, 2024

Research reveals scale of the EU’s dependency on imports for critical minerals needed for green transition

Posted by in categories: climatology, materials

The climate transition is a materials transition. Decades of international diplomacy around oil, gas and pipelines are now giving way to conversations around the supply of critical raw materials. And not before time: to meet the EU’s energy and climate targets, we need to build the right technologies, in the right quantities, at the right speed. The problem is that many of these technologies are built with materials imported from just a handful of countries.

May 25, 2024

3D printed conducting polymer hydrogels enable advanced implantable bioelectronics

Posted by in categories: biotech/medical, materials

Researchers have developed 3D printable conducting polymer hydrogels for implantable bioelectronics, enabling long-term electrophysiological monitoring and modulation of organs.

May 25, 2024

Transparent metamaterial for energy-efficient regulation in building can clean itself like a lotus leaf

Posted by in categories: climatology, materials

Researchers at the Karlsruhe Institute of Technology (KIT) introduce a polymer-based material with unique properties in the journal Nature Communications. This material allows sunlight to enter, maintains a more comfortable indoor climate without additional energy, and cleans itself like a lotus leaf. The new development could replace glass components in walls and roofs in the future. The research team has successfully tested the material in outdoor tests on the KIT campus.

May 25, 2024

Deciphering how crystals form in non-classical ways

Posted by in categories: innovation, materials

Recent experimental advancements have enabled more accurate and in-depth analysis of these materials during and after formation. The review article examines two decades of research on the non-classical formation pathways of soft and organic crystalline materials. It details the current theoretical understanding of how these materials form through non-classical pathways, including distinguishing the processes of nucleation and growth across models.

Advances in experimental methods, including in-line scattering/spectroscopy detection, cryo microscopy, and in situ liquid-phase characterization, and their application to studying soft and organic crystalline materials are also discussed.

These experimental techniques have provided strong evidence for non-classical crystallization pathways, leading to key breakthroughs in understanding these processes. However, the sole presence of a specific final product or intermediate does not prove that a material formed via a specific .

Page 33 of 302First3031323334353637Last