In optics, the era of glass lenses may be waning.
Category: materials – Page 261
“We did not expect to see such a dramatic improvement just by changing the morphology of the polymer,” said co-corresponding author Mircea Cotlet, a materials scientist in the CFN Soft and Bio Nanomaterials Group.
The scientists believe that there are two explanations behind their observations.
“At a certain polymer concentration, the nanowires have dimensions comparable to the wavelength of light,” said Li. “This size similarity has the effect of increasing light scattering and absorption. In addition, crystallization of P3HT molecules within the nanowires provides more charge carriers to transfer electricity to the graphene layer.”
Scientists are now closer than ever to being able to use graphene as a superconductor – to conduct electricity with zero resistance – making it useful for developing energy efficient gadgets, improving medical research, upgrading power grids, and much more besides.
The key to the new approach is heating a silicon carbide (SiC) crystal, itself a superconductor, until the silicon atoms have all evaporated. This leaves two graphene layers on top of each other in a way that, in certain conditions, offers no resistance to electrical current.
A similar dual-layer approach was also successfully used to turn graphene into a superconductor earlier this year. The difference here is the layers don’t have to be carefully angled on top of each other, which should make it easier to reproduce at scale.
‘’Until now, scientists assumed this all happened in a smooth, coordinated way. ‘’… silly scientists 🤔🙈🤦♂️.
Hitting a material with laser light sends vibrations rippling through its latticework of atoms, and at the same time can nudge the lattice into a new configuration with potentially useful properties – turning an insulator into a metal, for instance.
Until now, scientists assumed this all happened in a smooth, coordinated way. But two new studies show it doesn’t: When you look beyond the average response of atoms and vibrations to see what they do individually, the response, they found, is disorderly.
Atoms don’t move smoothly into their new positions, like band members marching down a field; they stagger around like partiers leaving a bar at closing time.
Based on observations by the European Souther Observatory’s GRAVITY instrument, this simulation shows gases swirling around the black hole at the center of the Milky Way — at just 30% the speed of light — “the first time material has been observed orbiting close to the point of no return.”
ESO/Gravity Consortium/L. Calçada
This video is the fourth in a multi-part series discussing computing. In this video, weíll be discussing computing performance and efficiency as well as how the computer industry plans on maximizing them.
[0:25–1:55] Starting off we’ll look at, how computing performance is measured and its rate of increase since the mid-1900s.
[1:55–8:05] Following that we’ll discuss, new classical computing paradigms that will push the computer industry forward past 2020. These paradigm shifts are 3D integrated circuits and the use of new materials such as graphene.
[8:05–10:15] To conclude we’ll summarize and wrap up many of the concepts we’ve discussed over this and the past few videos in this series!