Menu

Blog

Archive for the ‘materials’ category: Page 139

Sep 14, 2021

Scientists Bemused to Find Liquid Light at Room Temperature

Posted by in categories: cosmology, materials

https://youtube.com/watch?v=FiU5U_6ca0s

Of all the different dark matter detectors in the world, only one has consistently come up with a positive signal. The results of DAMA experiment in Italy are hotly debated — and now two experiments seeking to verify it using the same materials have returned conflicting results.

ANAIS, a dark matter detector run by the University of Zaragoza at the Canfranc Underground Laboratory in Spain, has delivered results that seem to contradict DAMA’s.

Continue reading “Scientists Bemused to Find Liquid Light at Room Temperature” »

Sep 14, 2021

Only One Experiment Has Detected Dark Matter So Far. Now, The Plot Has Thickened

Posted by in categories: cosmology, materials

Of all the different dark matter detectors in the world, only one has consistently come up with a positive signal. The results of DAMA experiment in Italy are hotly debated — and now two experiments seeking to verify it using the same materials have returned conflicting results.

ANAIS, a dark matter detector run by the University of Zaragoza at the Canfranc Underground Laboratory in Spain, has delivered results that seem to contradict DAMA’s.

But COSINE-100, run by a collaboration between the Korea Invisible Mass Search and Yale University at the Yangyang Underground Laboratory in South Korea, has now produced new output. These results are similar to what ANAIS’ threw up — but also a little closer to the results DAMA has produced over the last 20 years.

Sep 13, 2021

By confining the transport of electrons and ions, scientists show they can alter material properties

Posted by in categories: materials, quantum physics

Like ripples in a pond, electrons travel like waves through materials, and when they collide and interact, they can give rise to new and interesting patterns.

Scientists at the U.S. Department of Energy’s (DOE) Argonne National Laboratory have seen a new kind of wave pattern emerge in a thin film of metal oxide known as titania when its shape is confined. Confinement, the act of restricting materials within a boundary, can alter the properties of a material and the movement of molecules through it.

In the case of titania, it caused electrons to interfere with each other in a unique pattern, which increased the oxide’s conductivity, or the degree to which it conducts electricity. This all happened at the mesoscale, a scale where scientists can see both quantum effects and the movement of electrons and molecules.

Sep 13, 2021

The UK Just Launched the World’s First Graphene-Infused Road Upgrade

Posted by in categories: government, materials

In a press statement from the UK government, the work is described as a “world first.” The material is being used as part of a trial, meaning that the UK government will keep a close eye on the newly-laid surface over the coming years to discern whether graphene can be used more widely to increase the durability and lifespan of roads.


The concept has been meticulously tested in labs, now it’s time for a real-world application.

Sep 13, 2021

China opens first plant that will turn nuclear waste into glass

Posted by in categories: materials, nuclear energy

The site in Sichuan province will help the country deal with growing quantities of radioactive material as it steps up its use of nuclear power.

Sep 12, 2021

Acousto-Optic Filter Uses Sound To Bend Light

Posted by in category: materials

We all know that light and sound are wave phenomena, but of very different kinds. Light is electromechanical in nature, while sound is mechanical. Light can travel through a vacuum, while sound needs some sort of medium to transmit it. So it would seem that it might be difficult to use sound to modify light, but with the right equipment, it’s actually pretty easy.

Easy, perhaps, if you’re used to slinging lasers around and terms like “acousto-optic tunable filter” fall trippingly from your tongue, as is the case for [Les Wright]. An AOTF is a device that takes a radio frequency input and applies it to a piezoelectric transducer that’s bonded to a crystal of tellurium oxide. The RF signal excites the transducer, which vibrates the TeO2 crystal and sets up a standing wave within it. The alternating bands of compressed and expanded material within the crystal act like a diffraction grating. Change the excitation frequency, and the filter’s frequency changes too.

Continue reading “Acousto-Optic Filter Uses Sound To Bend Light” »

Sep 10, 2021

Scientists Found the Key to Harnessing 100% Electricity and Energy

Posted by in categories: energy, materials

Circa 2020


Hang onto your superconductors everyone. Scientists from the University of Chicago have discovered a new type of matter, where they may be able to conduct energy and electricity at 100% efficiency, without losing heat or friction.

Sep 6, 2021

Researchers realize gallium nitride-based complementary logic integrated circuits

Posted by in categories: computing, materials

Most integrated circuits (ICs) and electronic components developed to date are based on silicon metal-oxide-semiconductor (CMOS) technology. As silicon (Si) is known to have a narrow bandgap, however, in recent years engineers have been trying to develop ICs using other materials with a wider bandgap, such as gallium nitrite (GaN).

ICs made of GaN could have notable advantages over conventional ICs based on silicon, particularly for the development of power electronics, radiofrequency power amplifiers and devices designed to operate in harsh environments. However, so far developing GaN CMOS has proved to be highly challenging, due to the intrinsically low mobility of holes in the material and the lack of a suitable strategy for integrating n-channel and p-channel field-effect transistors (n-FETs and p-FETs) on a single substrate.

Researchers at the Hong Kong University of Science and Technology (HKUST) have recently realized a series of GaN-based complementary logic ICs. Their paper, published in Nature Electronics, could have important implications for the development of new types of electronics.

Sep 6, 2021

Unexpected Peaks in Spectrum Upset Conventional Models of Exotic Quantum Material

Posted by in categories: materials, quantum physics

Mott Insulator Exhibits a Sharp Response to Electron Injection In a finding that will give theorists plenty to ponder, an all-RIKEN team has observed an unexpected response in an exotic material known as a Mott insulator when they injected electrons into it. This observation promises to give physicists new insights into such materials, which are closely related to high-temperature superconductors.

Sep 3, 2021

Dense ‘hot spots’ on a young star reveal what Earth’s sun may have looked in its infancy

Posted by in categories: materials, space

Astronomers may have captured the best view yet of matter colliding with the surface of a young star, findings that may shed light on what the sun looked like in its youth.

Newborn stars are surrounded by a disk of gas and dust from which planets, asteroids, comets and moons are born. The star’s magnetic field connects the star with this protoplanetary disk, “funneling material from the disk onto the star,” study lead author Catherine Espaillat, an astrophysicist at Boston University, told Space.com.