Toggle light / dark theme

Previous attempts at trapping them in 2D had failed.


Successful electron trapping in 3D

The MIT team looked for materials that could be used to work out 3D lattices in kagome patterns and came across pyrochlore — a mineral with highly symmetric atomic arrangements. In 3D, pyrochlore’s atoms formed a repeating pattern consisting of cubes in a kagome-like lattice.

To test their hypothesis, the team synthesized the pyrochlore using calcium and nickel. After heating the ingredients to very high temperatures, the mix was cooled, and the atoms arranged themselves into a kagome-like structure.

Agi, if you can see or hear this. WE Eagerly Await and Welcome Your Arrival!!!


Update from November 9, 2023:

During a Q&A session at OpenAI’s developer conference, Altman reiterated that GPT-5 is not yet concrete. OpenAI still has “a lot” of things to figure out before it can train a model it calls GPT-5, Altman said.

There is no guarantee that it will work, and OpenAI still needs to solve difficult scientific problems and needs more computing power, he said.

A team of researchers at Kyoto University has been hard at work on a satellite made of wood — and they say it’s now scheduled to launch into space next summer in a joint mission between Japan’s JAXS space agency and NASA.

While it may sound like an odd choice of materials, they say wood is a surprisingly suitable material for space.

“When you use wood on Earth, you have the problems of burning, rotting, and deformation, but in space, you don’t have those problems: there is no oxygen in space, so it doesn’t burn, and no living creatures live in them, so they don’t rot,” Koji Murata, a Kyoto University researcher who’s been working on the project, told CNN.

“We are interested in studying shear deformation on icy moons because that type of faulting can facilitate the exchange of surface and subsurface materials through shear heating processes, potentially creating environments conducive for the emergence of life,” said Dr. Liliane Burkhard.


Two recent studies published in Icarus examine tectonic processes known as shear stresses which are also referred to as strike-slip faults on Saturn’s largest moon, Titan, and Saturn’s largest moon, Ganymede. While such processes are common on Earth, specifically with the San Andreas Fault in northern California, and have been observed on several icy moons throughout the solar system, these two studies hope to shed new light on the inner workings that cause these processes to occur on Titan and Ganymede, the latter of which is the largest moon in the solar system.

True color image of Saturn’s largest moon, Titan, passing in front of the ringed planet taken by NASA’s Cassini spacecraft. (Credit: NASA/JPL-Caltech/Space Science Institute)

Image of Ganymede, Jupiter’s largest moon and the largest moon in the entire solar system, taken by NASA’s Juno spacecraft. (Credit: NASA, JPL-Caltech, SwRI, MSSS, Kalleheikki Kannisto)

The Titan study focuses on how strike-slip faulting could be occurring at Selk crater, which is the proposed landing site for NASA’s upcoming Dragonfly mission, while the Ganymede study uses high-resolution data from NASA’s Galileo mission in the 1990s and 2000s to analyze a region known as Nippur/Philus Sulci, which scientists hope could help them better understand Ganymede’s geologic history.

A large space mirror heats up an asteroid, slowly melting it. Water, which was injected into the center of the body expands, blows up the melted material, creating the shape of a balloon. After cooling down, rotation is induced into the hollow body creating artificial gravity. An artificial fusion Sun brings daylight to the dark interior. A team of bio-life-support system experts, urban planners, and ecologists starts to create an artificial world inside the balloon, preparing it for the first settlers. The small world is then provided with a propulsion system and launched to one of the next stars or used as a space colony.

Illuminating a high-resolution lens with waves whose intensity diminishes over time can improve the image quality.

Images formed using a conventional lens have a strict resolution limit—features smaller than about one half of a wavelength of light are lost. “Superlenses” made from structures called metamaterials could potentially beat this restriction if not for unavoidable losses in the transmission of the light carrying the finest details. Now researchers have used sound waves to demonstrate a new way around this problem that should also apply to light waves: they varied the amplitude of the “illuminating” waves over time [1]. The new approach, they believe, will enable the development of more precise acoustic and photonic lenses for use in areas such as microscopy and ultrasound imaging.

Not all of the light that reflects off of an object escapes to distances far away. The so-called evanescent waves decay rapidly in amplitude as they travel away from an object, but these waves contain the subwavelength information required to beat the usual resolution limit. A technique called near-field scanning optical microscopy can detect these waves by using a probe to scan across the object at close range, but real-time images are not possible because the scanning process is time consuming. Other “superresolution” imaging techniques also face trade-offs between complexity, speed, and efficiency.

A new study reveals that supermassive black holes at the centers of galaxies, known as quasars, can sometimes be obscured by dense clouds of gas and dust in their host galaxies.

This challenges the prevailing idea that quasars are only obscured by donut-shaped rings of dust in the close vicinity of the black hole.

Quasars are extremely bright objects powered by gorging on surrounding material. Their powerful radiation can be blocked if thick clouds come between us and the quasar.

The biggest companies in AI aren’t interested in paying to use copyrighted material as training data, and here are their reasons why.

The US Copyright Office is taking public comment on potential new rules around generative AI’s use of copyrighted materials, and the biggest AI companies in the world had plenty to say. We’ve collected the arguments from Meta, Google, Microsoft, Adobe, Hugging Face, StabilityAI, and Anthropic below, as well as a response from Apple that focused on copyrighting AI-written code.

There are some differences in their approaches, but the overall message for most is the same: They don’t think they should have to pay to train AI models on copyrighted work.

The Copyright… More


Most argue training with copyrighted data is fair use.

The new material is highly scalable especially compared to other alternatives such as graphene and diamonds.

Researchers at Delft University of Technology have created a novel material that has a yield strength ten times higher than Kevlar, rivaling the strength of other super strong alternatives such as graphene and diamonds.

High-strength synthetic fibers like Kevlar are renowned for their remarkable resilience to abrasion and wear. They are most notably used in applications that are reinforcing and strengthening, particularly in body armor, helmets, and other protective gear.