OneZoom is a one-stop site for exploring all life on Earth, its evolutionary history, and how much of it is threatened with extinction.
The OneZoom explorer – available at onezoom.org – maps the connections between 2.2 million living species, the closest thing yet to a single view of all species known to science. The interactive tree of life allows users to zoom in to any species and explore its relationships with others, in a seamless visualisation on a single web page. The explorer also includes images of over 85,000 species, plus, where known, their vulnerability to extinction.
OneZoom was developed by Imperial College London biodiversity researcher Dr. James Rosindell and University of Oxford evolutionary biologist Dr. Yan Wong. In a paper published today in Methods in Ecology and Evolution, Drs Wong and Rosindell present the result of over ten years of work, gradually creating what they regard as “the Google Earth of biology.”
In a paper published today in the scientific journal Science, DeepMind demonstrates how neural networks can be used to describe electron interactions in chemical systems more accurately than existing methods.
Density Functional Theory, established in the 1960s, describes the mapping between electron density and interaction energy. For more than 50 years, the exact nature of mapping between electron density and interaction energy—the so-called density functional—has remained unknown. In a significant advancement for the field, DeepMind has shown that neural networks can be used to build a more accurate map of the density and interaction between electrons than was previously attainable.
By expressing the functional as a neural network and incorporating exact properties into the training data, DeepMind was able to train the model to learn functionals free from two important systematic errors—the delocalisation error and spin symmetry breaking—resulting in a better description of a broad class of chemical reactions.
Microsoft has announced a new DirectX12 API for Windows which will offer a new way for apps to efficiently encode video using the GPU.
The Video Encode API is available to 3rd party apps and is native to Windows 11, and can efficiently encode video in the H264 and HEVC formats.
Microsoft says it offers a considerable number of configurable parameters are exposed by this API for the user to tweak different aspects of the encoding process and make them fit best for their scenarios such as: custom slices partitioning scheme, active (i.e. CBR, VBR, QBVR) and passive (Absolute/Delta custom QP maps) rate control configuration modes, custom codec encoding tools usage, custom codec block and transform sizes, motion vector precision limit, explicit usage of intra-refresh sessions, dynamic reconfiguration of video stream resolution/rate control/slices partitioning and more.
Israeli drone manufacturer Airobotics has collaborated with Israeli solar farm services company Solar Drone to develop and supply to Solar Drone a unique solar panel cleaning drone system. The fully automated system will include a drone docking station for automatic battery replacement and cleaning fluid replenishment, enabling the system to operate continuously.
While solar power and solar panels are essentially maintenance-free systems, but solar panels do require cleaning from time to time to enable proper function. Dirt, dust, mud, and bird dropping greatly reduce solar panel efficiency, impacting power output. Frequent cleaning is expensive and time-consuming, especially when panels are remote, difficult to access, or difficult to clean.
A new “drone-in-a-box”-type system is now being developed to do this job. A quadrocopter is housed inside a weatherproof dock located near the solar panels. At regular intervals, the station doors on top will open, releasing the drone. The drone will then take off and fly up to the panels, using LiDAR sensors and mapping cameras for more accurate positioning. Each panel will be sprayed with a cleaning fluid, and after completing the task, the drone will return to the docking station. If necessary, the robotic system will replace the discharged battery with the charged one and replace its cleaning fluid container with a full one.
Rapid advances in large-scale connectomics are beginning to spotlight the importance of individual variations in the neural circuitry. They also highlight the limitations of “wiring diagrams” alone.
Jon Kaas, Gertrude Conaway Vanderbilt Chair in Social and Natural Sciences, Distinguished Centennial Professor of Psychology and associate professor of cell and developmental biology, received the Ralph W. Gerard Prize in Neuroscience, the highest recognition from the Society for Neuroscience, for his pathbreaking work in illuminating the structure and function of the cerebral cortex and plasticity in the developing and adult brain.
Through mapping the cerebral cortex in 30 mammalian species over his career, Kaas has shown the functional and structural organization of the visual and somatosensory—that is, sensations that span the body, such as warmth—systems in detail. Through detailed pictorial construction and electrophysical mapping, Kaas reversed a scientific dogma that brain plasticity only occurs in early life. This has led to new approaches to rehabilitation from brain damage after stroke, from macular degeneration or from motor system disorders and injuries.
“I’m pleased to share this award with Bob Desimone who has done such wonderful research, and who we once tried to convince to move to Vanderbilt,” Kaas said. “From my first days at Vanderbilt, I have worked with outstanding graduate students, undergraduates and postdocs, who made everything possible. The support of members of my Department and other faculty at Vanderbilt has been especially important.”
Women constitute a mere 22 per cent or less than a quarter of professionals in the field of AI and Data Science.
There is a troubling and persistent absence of women when it comes to the field of artificial intelligence and data science. Women constitute a mere 22 per cent or less than a quarter of professionals in this field, as says the report “Where are the women? Mapping the gender job gap in AI,” from The Turing Institute. Yet, despite low participation and obstacles, women are breaking the silos and setting an example for players out in the field of AI.
To honour their commitment and work done, we have listed some of the women innovators and researchers who have worked tirelessly and contributed significantly to the field of AI and data science. The list below is provided in no particular order.
The brainchild behind and the founder of The Algorithmic Justice League (AJL), Joy Buolamwini, has started the organisation that combines art and research to illuminate the social implications and harms of artificial intelligence. With her pioneering work on algorithmic bias, Joy opened the eyes of the world and brought out the gender bias and racial prejudices embedded in facial recognition systems. As a result, Amazon, Microsoft, and IBM all halted their facial recognition services, admitting that the technology was not yet ready for widespread usage. One can watch the famous documentary ‘Coded Bias’ to understand her work. Her contributions will surely pave the way for a more inclusive and diversified AI community in the near future.
Neura Pod is a series covering topics related to Neuralink, Inc. Topics such as brain-machine interfaces, brain injuries, and artificial intelligence will be explored. Host Ryan Tanaka synthesizes informationopinions, and conducts interviews to easily learn about Neuralink and its future.
Most people aren’t aware of what the company does, or how it does it. If you know other people who are curious about what Neuralink is doing, this is a nice summary episode to share. Tesla, SpaceX, and the Boring Company are going to have to get used to their newest sibling. Neuralink is going to change how humans think, act, learn, and share information.
Viewers like you help make PBS (Thank you 😃). Support your local PBS Member Station here: https://to.pbs.org/DonateSPACE
Find out how scientists are mapping the black holes throughout the Milky Way and beyond as well as the answer to the Escape the Kugelblitz Challenge Question. Were you able to save humanity?
Quasars, X-ray Binaries and Supermassive voids at the center of our galaxies … black holes take many forms. In this episode Matt tells us what these different types of black holes are and how scientists are using VLBI, Very Long Baseline Interferometry, to map the different black holes throughout the known universe.