Toggle light / dark theme

Rethinking the centrality of brain areas in understanding functional organization

For decades, neuroscience textbooks have taught us that the brain is organized into discrete areas — like Broca’s area for language or V1 for early vision, each with a well-defined role. This kind of areal parcellation has shaped how we interpret brain imaging, neural recordings, and even theories of cognition.

But this new article challenges that foundational idea. Instead of treating brain areas as the central units of brain function, the authors argue that brain organization is more complex, multi-layered, and distributed than traditional area-based frameworks suggest.

The authors begin with a simple observation: the ways in which neuroscientists define cortical areas, based on cell structure (cytoarchitecture), connectivity, or response properties — don’t always point to the same boundaries. In other words, different methods of dividing the cortex produce different “maps,” and there’s surprisingly little convergence on a single, definitive set of brain areas.

This inconsistency raises a big question: If areas aren’t consistently defined by structure or connectivity, can we really treat them as the fundamental units of brain function.


Parcellation of the cortex into functionally modular brain areas is foundational to neuroscience. Here, Hayden, Heilbronner and Yoo question the central status of brain areas in neuroscience from the perspectives of neuroanatomy and electrophysiology and propose an alternative approach.

Study reveals visual processing differences in dyslexia extend beyond reading

New research published in Neuropsychologia provides evidence that adults with dyslexia process visual information differently than typical readers, even when viewing non-text objects. The findings suggest that the neural mechanisms responsible for distinguishing between specific items, such as individual faces or houses, are less active in the dyslexic brain. This implies that dyslexia may involve broader visual processing differences beyond the well-known difficulties with connecting sounds to language.

Dyslexia is a developmental condition characterized by significant challenges in learning to read and spell. These difficulties persist despite adequate intelligence, sensory abilities, and educational opportunities. The most prominent theory regarding the cause of dyslexia focuses on a phonological deficit. This theory posits that the primary struggle lies in processing the sounds of spoken language.

According to this view, the brain struggles to break words down into their component sounds. This makes mapping those sounds to written letters an arduous task. However, reading is also an intensely visual activity. The reader must rapidly identify complex, fine-grained visual patterns to distinguish one letter from another.

3D maps reveal hidden microenvironments shaping mouse brain connectivity

Recent technological and scientific advances have opened new possibilities for neuroscience research, which is in turn leading to interesting new discoveries. Over the past few years, many groups of neuroscientists worldwide have been trying to map the structure of the brain and its underlying regions with increasing precision, while also probing their involvement in specific mental functions.

As mapping the human brain in detail is often challenging and requires significant resources, many studies focus on other mammals, particularly mice or other rodents. Most mouse brain atlases delineated to date map the density of neurons or other brain cells (i.e., how many cells are packed in specific parts of the brain). In contrast, fewer works also tried to map the shape of neurons in the mouse brain and interactions between them.

Researchers at Fudan University and Southeast University recently set out to map dendrites (i.e., branch-like extensions of neurons via which they receive signals from other cells) in the mouse brain. Their paper, published in Nature Neuroscience, unveils groups of structures in the mouse brain that influence how neurons function and connect to other neurons, also known as microenvironments.

Astrocyte diversity across space and time charted in new atlas

When it comes to brain function, neurons get a lot of the glory. But healthy brains depend on the cooperation of many kinds of cells. The most abundant of the brain’s non-neuronal cells are astrocytes, star-shaped cells with a lot of responsibilities. Astrocytes help shape neural circuits, participate in information processing, and provide nutrient and metabolic support to neurons. Individual cells can take on new roles throughout their lifetimes, and at any given time, the astrocytes in one part of the brain will look and behave differently than the astrocytes somewhere else.

After an extensive analysis by researchers at MIT, neuroscientists now have an atlas detailing astrocytes’ dynamic diversity. Its maps depict the regional specialization of astrocytes across the brains of both mice and marmosets—two powerful models for neuroscience research—and show how their populations shift as brains develop, mature, and age.

The open-access study, reported in the Nov. 20 issue of the journal Neuron, was led by Guoping Feng, the James W. (1963) and Patricia T. Poitras Professor of Brain and Cognitive Sciences at MIT.

How Agentic BAS AI Turns Threat Headlines Into Defense Strategies

Picus Security explains why relying on LLM-generated attack scripts is risky and how an agentic approach maps real threat intel to safe, validated TTPs. Their breakdown shows how teams can turn headline threats into reliable defense checks without unsafe automation.

Comprehensive map reveals neuronal dendrites in the mouse brain in greater detail

Understanding the shape or morphology of neurons and mapping the tree-like branches via which they receive signals from other cells (i.e., dendrites) is a long-standing objective of neuroscience research. Ultimately, this can help to shed light on how information flows through the brain and pin-point differences associated with specific neurological or psychiatric disorders.

The X. William Yang Lab at the Jane and Terry Semel Institute and the Department of Psychiatry and Biobehavioral Sciences at University of California, Los Angeles (UCLA) have devised new sophisticated methods to map neuronal dendrites in the mouse brain, which combine large-scale data collection with genetic labeling techniques and computational tools.

Their research approach, outlined in a paper published in Nature Neuroscience, allowed them to create a comprehensive map of two genetic types of neurons in the mouse brain, known as D1-and D2-type striatal medium spiny neurons (MSNs).

Seeing physics as a mountain landscape for classification of nonlinear systems

Imagine standing on top of a mountain. From this vantage point, we can see picturesque valleys and majestic ridges below, and streams wind their way downhill. If a drop of rain falls somewhere on this terrain, gravity guides it along a path until it settles in one of the valleys. The trajectory traced by this droplet is known as a flow line, a path that indicates the direction of movement determined by the landscape’s gradient.

The complete network of valleys, ridges, and flow lines forms a topographic (or cartographic) map that captures the organization of the landscape. This organization, which remains stable as long as the terrain does not change, corresponds to a kind of “topological invariant,” as physicists would call it: It characterizes the global structure of the flows without reference to local details.

Now imagine that a jolt goes through the landscape and it changes, with new valleys appearing, others merging and ridges shifting. The flow lines reorganize accordingly, forming a new pattern of connections. Comparing these patterns—like two maps placed next to each other—reveals how the system’s topology evolves when its underlying conditions change.

X-ray imaging captures the brain’s intricate connections

An international team of researchers led by the Francis Crick Institute, working with the Paul Scherrer Institute, has developed a new imaging protocol to capture mouse brain cell connections in precise detail. In work published in Nature Methods, they combined the use of X-rays with radiation-resistant materials sourced from the aerospace industry.

The images acquired using this technique allowed the team to see how nerve cells connect in the mouse brain, without needing to thinly slice biological tissue samples.

Volume electron microscopy (volume EM) has been the gold standard for imaging how nerve cells connect as ‘“circuitry” inside the brain. It has paved the way for scientists to create maps called connectomes, of entire brains, first in fruit fly larvae and then the adult fruit fly. This imaging involves cutting 10s of nm thin slices (tens of thousands per mm of tissue), imaging each slice and then building the images back into their 3D structure.

/* */