Category: life extension
Corporate Reconnoitering?
Authored By Copyright Mr. Andres Agostini
White Swan Book Author (Source of this Article)
http://www.LINKEDIN.com/in/andresagostini
http://www.AMAZON.com/author/agostini
https://www.FACEBOOK.com/heldenceo (Other Publications)
http://LIFEBOAT.com/ex/bios.andres.agostini
http://ThisSUCCESS.wordpress.com
https://www.FACEBOOK.com/agostiniandres
http://www.appearoo.com/aagostini
http://connect.FORWARDMETRICS.com/profile/1649/Andres-Agostini.html
https://www.FACEBOOK.com/amazonauthor
http://FUTURE-OBSERVATORY.blogspot.com
http://ANDRES-AGOSTINI-on.blogspot.com
http://AGOSTINI-SOLVES.blogspot.com
@AndresAgostini
@ThisSuccess
@SciCzar
Technologies based on stem cells, genetic engineering or tissue engineering may eventually have considerable impact in alleviating certain diseases such as arthritis, heart disease, or dementia. But these rejuvenation biotechnologies cannot be used by the general public at large in order to negate the ageing process itself.
1. Problems with Stem Cell Therapies
One methodology for delivering biotechnology rejuvenation therapies (such as stem cell therapy) is bone marrow transplant. This is a complex, clinically risky, and administratively complicated procedure. It is well beyond the technical issue of artificially manipulating and repairing cells in the laboratory. Cells need to be harvested from a patient, manipulated in the laboratory, and then re-transplanted in the patient.
Consider what happens during an autologous cell harvest. The patient has to attend a clinic and this may involve a pre-procedure physical assessment, followed by administration of a Colony-Stimulating Factor which is given as an injection every day for up to 14 days, (the patient must be instructed on how to do this at home). A course of chemotherapy may be needed in order to regulate the production of stem cells. The patient returns for another visit for the harvest. The harvesting process takes three to four hours and it may have to be repeated every day for up to five days in order to collect enough cells for the transplant. It involves an epidural or a general anaesthetic (with all the associated risks), punctures over the pelvic bone and withdrawal of marrow material. Alternatively, intravenous access and blood withdrawal need to be arranged. The amount to be withdrawn must be assessed from person to person. The patient needs to recover from the anaesthetic.
After appropriate laboratory treatment of the cells, the patient needs to return for the transplant itself. The patient will again need to have a pre-treatment visit and (a full day) assessment, pre-treatment conditioning with insertion of an indwelling central venous access line, followed by intravenous (or intra-bone marrow) injection of primed stem cells, (which may need to be repeated the following day or more times soon after).
Following the procedure, it is necessary to observe the patient due to the risk of infection, and the patient must be kept in a germ-free environment, in some cases for up to three months (in hospital). The follow-up period can be one or two years in some cases, and there is a need for specialist nutritional input, home care, occupational therapy, medical follow-ups and regular clinic appointments. Even then, the fate of the injected stem cells remains unclear, both in functional and in duration terms. For instance, the injected stem cells need to develop cross-talking pathways with existing mesenchymal and endothelial cells, which involves a precise, co-ordinated, dynamic and hierarchical expression of genes and proteins, many of which are based upon stochastic elements, which are impossible to predict. This may influence the lifespan of the injected stem cells and require an earlier-than-planned re-treatment.
2. Problems with Tissue Engineering
Another proposed biotechnological therapy against age-relate degeneration such as abnormal tissue function due to cell loss, is tissue engineering. Although the technology necessary for developing large amounts of viable engineered tissue such as bone, skin or even heart can be achieved, a major problem is the transplantation of this engineered tissue to the appropriate organ in humans. Autologous cells must be harvested from the patient, either surgically or through a bone marrow procedure as discussed above, and then, following appropriate engineering interventions, transplanted surgically in the patient. The clinical sequences of the procedure, particularly those involving more advanced techniques such as in situ or in vivo tissue engineering may take a year from beginning to end. Therapies involving allogenic tissues will require lifelong immunosuppression. This would be a therapy for one type of tissue, and therefore the entire procedure would need to be repeated for other types of tissue, until all tissues affected by age-related damage would have been repaired. Questions about the number of qualified surgeons needed in order to carry out these procedures en masse would need to be addressed. Pre and post procedure assessments, physical rehabilitation therapy, follow up meetings, risk of infection or thromboembolism, and other intrinsic consequences of surgery would add to the existing difficulties.
3. Problems with Genetic Therapies
As a concept, gene therapy appears ideal in treating ageing changes. However, this is an oversimplification fraught with clinical obstacles. It is known there are several hundred genes that can modulate the ageing process. In mice alone there are over 100. Issues with pre-existing immunity to the vector, choice of vector, costs, dose, and many others need to be addressed. Non-viral vectors such as liposomes or methods based on nanotechnology need to be given to the patient via an intravenous route with all the problems discussed above. The new gene may not be inserted correctly on the DNA, or it may be overexpressed, causing more problems than it resolves. The risk of introducing infection or inducing a cancerous change remains.
For these and other reasons, the progress with gene therapy has not been as vigorous as expected. New techniques such as CRISPR cannot easily be applied in clinical situations involving humans. The current administration technique involves a hydrodynamic injection method which in mice has been proven effective in some experiments, but remains unusable in humans.
Discussion
These methods of administration are likely to remain the same (with minor, irrelevant to this argument, technical modifications) in the near-term (10−15 years) and perhaps the medium-term (20−50 years) future. Bone marrow transplant, is currently an appropriate method for patients who have one specific disease, but its applicability must be rigorously questioned when it is intended for people who have many co-existing age-related conditions. Our medical systems can tolerate this type of treatment if it is directed at a few patients having one disease each. But a single stem cell therapy will not have an effect on multiple conditions or organs, therefore if we consider that there are many organs needing treatment against ageing, then this becomes a clinical and administrative nightmare. However, it becomes an impossibility when, in addition to the above, we aim to treat large numbers of people. Worldwide, there are approximately 60,000 bone marrow transplants (BMT) performed each year. If we assume that, over a 10 year period, an arbitrary minimum 1% of all humans could possibly be treated with BMT-dependent rejuvenation biotechnologies each year, then there will be a need to provide 70,000,000 BMT a year! Or, viewing this from another angle, assuming a reasonable yearly 20% increase in our clinical capability to deliver rejuvenation biotechnologies, it will take us 10 years to reach a mere 1 000 000 target patients, (and at that point, the procedures would need to be repeated in the same patients, in order to maintain the status quo). Therefore, even in the best case scenario, we could only possibly treat 0.015% of humans, ever.
In addition, patients would need to undertake other rejuvenation procedures such as vaccinations, cytotoxic and other drugs, multiple crosslink breakers (drugs or enzymes), intravenous immunotherapy, apoptotic-modulators, and other treatment modalities. And this has to be repeated until all organs or tissues where there is accumulation of age-related pathology have been treated. But this is not the end, as all of these procedures will need to be repeated in the same patient in perpetuity (in order to achieve a continual absence or age related pathology for an indefinite time). Let me look at the matter in a different way: One cycle of treating one aspect or group of damages via bone marrow transplant, realistically takes a minimum of 2–3 months. It is likely that the same patient will need to undergo the bone marrow stem cell transplant procedure again in order to treat different organs such as brain degeneration, pancreatic or liver damage, or visual age-related damage. If each such cycle takes 3 months, then there will not be enough months in the year for any patient in order to have the full treatment for each and every organ or tissue. The quality of life of the recipient will be reduced to a minimum, and it will be a miserable and endless cycle of hospital and clinic visits, treatments and follow-up appointments repeated into perpetuity, a kind of dystopian, dehumanised society. The above discussion refers to the difficulties encountered during a scenario where we aim to treat just 10% of humanity. If we now consider the difficulties associated with treating the other 90%, then it must be obvious even to the most ardent advocate of rejuvenation biotechnologies that this method of addressing the ageing problem becomes an impossible delusion.
We should also acknowledge the possibility that, although some therapies could be developed, these may not by themselves result to any appreciable benefit for the patient until other therapies have also been developed and deployed. For instance, if a therapy is devised against atherosclerosis but not against cancer, the patient will perish from cancer-related damage, even if their arteries are healthy. So all of the above interventions need to be developed at an appropriately advanced clinical stage.
At this point it may be worth reiterating that I fully recognise the value of biomedical regeneration technologies but only insofar these are applied on specific and isolated diseases, and not on the biological process of ageing itself. Rejuvenation biotechnologies will not be of any value for the great majority of us who are aiming to avoid ageing and live a life without chronic degeneration.
Since ancient times people have been searching for the secret of immortality. Their quest has always been, without exception, about a physical item: a fountain, an elixir, an Alchemist’s remedy, a chalice, a pill, an injection of stem cells or a vial containing gene-repairing material. It has never been about an abstract concept.
Our inability to find a physical cure for ageing is explained by a simple fact: We cannot find it because it does not exist. It will never exist.
Those who believe that someday some guy is going to discover a pill or a remedy and give it to people so that we will all live forever are, regrettably, deluded.
I should highlight here that I refer to a cure for the ageing process in general, and not a cure for a specific medical disease. Biotechnology and other physical therapies are useful in alleviating many diseases and ailments, but these therapies will not be the answer to the basic biological process of ageing.
In a paper I published in the journal Rejuvenation Research I outline some of the reasons why I think biotechnology will not solve the ageing problem. I criticise projects such as SENS (which are based upon physical repairs of our ageing tissues) as being essentially useless against ageing. The editor’s rebuttal (being weak and mostly irrelevant) proved and strengthened my point. There are insurmountable basic psychological, anatomical, biological and evolutionary reasons why physical therapies against ageing will not work and will be unusable by the general public. Some of these reasons include pleiotropy, non-compliance, topological properties of cellular networks, non-linearity, strategic logistics, polypharmacy and tolerance, etc. etc.
So, am I claiming that we are doomed to live a life of age-related pathology and degeneration, and never be able to shake off the aging curse? No, far from it. I am claiming that it is quite possible, even inevitable, that ageing will be eliminated but this will not be achieved through a physical intervention based on bio-medicine or bio-technology. Ageing will be eliminated through fundamental evolutionary and adaptation mechanisms, and this process will take place independently of whether we want it or not.
It works like this: We now age and die because we become unable to repair random background damage to our tissues. Resources necessary for this have been allocated by the evolutionary process to our germ cell DNA (in order to assure the survival of the species) and have been taken away from our bodily cells. Until now, our environment was so full of dangers that it was more thermodynamically advantageous for nature to maintain us up to a certain age, until we have progeny and then die, allowing our progeny to continue life.
However, this is now changing. Our environment is becoming increasingly more secure and protective. Our technology protects us against dangers such as infections, famine and accidents. We become increasingly embedded into the network of a global techno-cultural society which depends upon our intelligence in order to survive. There will come a time when biological resources spent to bring up children would be better spent in protecting us instead, because it would be more economical for nature to maintain an existing, well-embedded human, rather than allow it to die and create a new one who would then need more resources in order to re-engage with the techno-cultural network. Disturbing the network by taking away its constituents and trying to re-engage new inexperienced ones is not an ideal action and therefore it will not be selected by evolution.
The message is clear: You have more chances of defying ageing if, instead of waiting for someone to discover a pill to make you live longer, you become a useful part of a wider network and engage with a technological society. The evolutionary process will then ensure that you live longer-as long as you are useful to the whole.
Further reading
http://ieet.org/index.php/IEET/more/kyriazis20121031
The Life Extension Hubris: Why biotechnology is unlikely to be the answer to ageing
http://www.ncbi.nlm.nih.gov/pubmed/25072550
http://arxiv.org/abs/1402.6910
Western Canada’s most futurist-oriented longevity organization, the Lifespan Society of British Columbia, has organized a first-class life extension conference, which will take place later this fall in the heart of downtown Vancouver. The Longevity and Genetics Conference 2014 offers a full-day of expert presentations, made accessible to a general audience, with keynote on the latest developments in biorejuvination by Aubrey de Grey of SENS Research Foundation. The conference will be interactive, with a panel session for audience questions, and VIP options for further interaction with speakers.
Who will be there? In addition to Aubrey de Grey, there are four other speakers confirmed thus far: Dr. Angela Brooks-Wilson, Head of Cancer Genetics at the Michael Smith Genome Sciences Centre at the BC Cancer Agency, Dr. S. Jay Olshansky, Board of Directors of the American Federation of Aging Research, and co-author of The Quest for Immortality: Science at the Frontiers of Aging, Dr. Clinton Mielke, former Mayo Clinic researcher and founder of the quantified self platform “infino.me”, and lastly, one of futurism’s most experienced and dedicated radical longevity advocates, Benjamin Best, who is currently Director of Research Oversight at the Life Extension Foundation. This conference is a multi-disciplinary event, engaging several points of interest and relevance in the longevity space, from the cellular, genetic science of aging, to the latest epidemiological and even demographic research. You can also expect discussion on personalized medicine and quantified self technologies, as well as big picture, sociological and philosophical, longevity-specific topics.
All around, the 2014 Longevity and Genetics conference, set to take place Saturday November 15, has a lot to offer, as does the host city of Vancouver. A recent study has indicated that a majority of Canadians, 59%, are in favor of life extension technology, with 47% expecting that science and technology will enable living until 120 by 2050. The Lifespan Society of British Columbia is keeping that momentum and enthusiasm alive and growing, and I’m glad they have organized such a high-calliber event. Tickets are currently still available. Learn more about the event and purchase tickets here.
Would you have your brain preserved? Do you believe your brain is the essence of you?
To noted American PhD Neuroscientist and Futurist, Ken Hayworth, the answer is an emphatic, “Yes.” He is currently developing machines and techniques to map brain tissue at the nanometer scale — the key to encoding our individual identities.
A self-described transhumanist and President of the Brain Preservation Foundation, Hayworth’s goal is to perfect existing preservation techniques, like cryonics, as well as explore and push evolving opportunities to effect a change on the status quo. Currently there is no brain preservation option that offers systematic, scientific evidence as to how much human brain tissue is actually preserved when undergoing today’s experimental preservation methods. Such methods include vitrification, the procedure used in cryonics to try and prevent human organs from freezing and being destroyed when tissue is cooled for cryopreservation.
Hayworth believes we can achieve his vision of preserving an entire human brain at an accepted and proven standard within the next decade. If Hayworth is right, is there a countdown to immortality?
To find out more, please take a look at the Galactic Public Archives’ newest video. We’d love to hear your thoughts.
Cheers!
What follows is my position piece for London’s FutureFest 2013, the website for which no longer exists.
Medicine is a very ancient practice. In fact, it is so ancient that it may have become obsolete. Medicine aims to restore the mind and body to their natural state relative to an individual’s stage in the life cycle. The idea has been to live as well as possible but also die well when the time came. The sense of what is ‘natural’ was tied to statistically normal ways of living in particular cultures. Past conceptions of health dictated future medical practice. In this respect, medical practitioners may have been wise but they certainly were not progressive.
However, this began to change in the mid-19th century when the great medical experimenter, Claude Bernard, began to champion the idea that medicine should be about the indefinite delaying, if not outright overcoming, of death. Bernard saw organisms as perpetual motion machines in an endless struggle to bring order to an environment that always threatens to consume them. That ‘order’ consists in sustaining the conditions needed to maintain an organism’s indefinite existence. Toward this end, Bernard enthusiastically used animals as living laboratories for testing his various hypotheses.
Historians identify Bernard’s sensibility with the advent of ‘modern medicine’, an increasingly high-tech and aspirational enterprise, dedicated to extending the full panoply of human capacities indefinitely. On this view, scientific training trumps practitioner experience, radically invasive and reconstructive procedures become the norm, and death on a physician’s watch is taken to be the ultimate failure. Humanity 2.0 takes this way of thinking to the next level, which involves the abolition of medicine itself. But what exactly would that mean – and what would replace it?
The short answer is bioengineering, the leading edge of which is ‘synthetic biology’. The molecular revolution in the life sciences, which began in earnest with the discovery of DNA’s function in 1953, came about when scientists trained in physics and chemistry entered biology. What is sometimes called ‘genomic medicine’ now promises to bring an engineer’s eye to improving the human condition without presuming any limits to what might count as optimal performance. In that case, ‘standards’ do not refer to some natural norm of health, but to features of an organism’s design that enable its parts to be ‘interoperable’ in service of its life processes.
In this brave new ‘post-medical’ world, there is always room for improvement and, in that sense, everyone may be seen as ‘underperforming’ if not outright disabled. The prospect suggests a series of questions for both the individual and society: (1) Which dimensions of the human condition are worth extending – and how far should we go? (2) Can we afford to allow everyone a free choice in the matter, given the likely skew of the risky decisions that people might take? (3) How shall these improvements be implemented? While bioengineering is popularly associated with nano-interventions inside the body, of course similarly targeted interventions can be made outside the body, or indeed many bodies, to produce ‘smart habitats’ that channel and reinforce desirable emergent traits and behaviours that may even leave long-term genetic traces.
However these questions are answered, it is clear that people will be encouraged, if not legally required, to learn more about how their minds and bodies work. At the same time, there will no longer be any pressure to place one’s fate in the hands of a physician, who instead will function as a paid consultant on a need-to-know and take-it-or-leave-it basis. People will take greater responsibility for the regular maintenance and upgrading of their minds and bodies – and society will learn to tolerate the diversity of human conditions that will result from this newfound sense of autonomy.
By Richard Van Noorden and Nature magazine — Scientific American
Scientists who work on genomics and are funded by the US National Institutes of Health (NIH) must post their data online so that others can build on the information, the agency has said in an update to its guidelines.
The change, which expands the remit of an earlier data-sharing policy, is not expected to drastically alter research practices — many genomics researchers are accustomed to sharing their data. But the latest policy, released on 27 August, gives clearer instructions for gaining the informed consent of study participants. The NIH will now require researchers to tell study participants that their data may be broadly shared for future research.
In Virtually Human, you’ll have the privilege of meeting Bina48, the world’s most sentient robot, commissioned by Martine Rothblatt and created by Hanson Robotics. Bina48 is a nascent Mindclone of Martine’s wife that can engage in conversation, answer questions, and even have spontaneous thoughts that are derived from multimedia data in a Mindfile created by the real Bina (be sure to check her out on Twitter too – @iBina48!).
If you’re personally active on Twitter or Facebook, share photos through Instagram, or blog regularly, you’re also already on your way to creating a Mindfile – a digital database of your thoughts, memories, feelings, and opinions. And soon, this Mindfile can be made conscious with special software—Mindware—that mimics the way human brains organize information, create emotions and achieve self-awareness. Virtually Human is the only book to examine the ethical issues relating to cyberconsciousness and Rothblatt, with a Ph.D. in medical ethics, is uniquely qualified to lead the dialogue. On sale Sept 9th, I wanted to be sure everyone at Lifeboat knew about it, and you can pre-order your copy today: http://smarturl.it/vhaz and http://smarturl.it/bnVh.
Written By: Jason Dorrier — Singularity Hub
To Aubrey de Grey, the body is a machine. Just as a restored classic car can celebrate its hundredth birthday in peak condition, in the future, we’ll maintain our bodies’ cellular components to stave off the diseases of old age and live longer, healthier lives.
Dr. de Grey is cofounder and Chief Science Officer of the SENS Research Foundation and faculty at Singularity University’s November Exponential Medicine conference—an event exploring the healthcare impact of technologies like low-cost genomic sequencing, artificial intelligence, synthetic biology, gene therapy, and more.