Toggle light / dark theme

In the style of Sleeping Beauty, Tardigrades, the adorable, tiny animals that can withstand extreme environments and are also known as “water bears,” can withstand freezing without losing their vitality. Despite harsh environmental conditions, tardigrades are very adaptable. According to Ralph Schill, a professor at the University of Stuttgart, anhydrobiotic (dry) tardigrades can survive for many years without absorbing water. In a frozen state, there was no clear indication of whether aging increased or decreased. It turns out that frozen tardigrades don’t age.

Water bears, also known as tardigrades, are nematodes. They have the same gait as bears, but that’s about the only thing that connects them to bears. As a result of their adaptability to rapidly changing environmental conditions, tardigrades, which are barely one millimeter in size, can freeze in extreme cold and dry out in extreme heat. Rather than dying, Schill explains that they fall into a deep sleep. A cell organism experiences different types of stress when it freezes or dries out. Despite this, tardigrades are equally capable of surviving both extremes of heat and cold. No obvious signs of life can be seen on them. In this state of rest, the animal’s internal clock might be slowed down, which raises the question of whether it ages.

Schill and his team investigated the aging process of dried tardigrades several years ago, which waited in their habitat for rain for many years. Grimm brothers’ fairytales depict a princess who is deeply asleep. A young prince kisses her 100 years later, and she awakes looking as beautiful and young as ever. In a dried state, tardigrades are the same, and therefore this hypothesis is called the “Sleeping Beauty” hypothesis. Schill explains that the internal clock stops during inactivity and resumes once the organism has been reactivated. Accordingly, the researcher explained that tardigrades, whose lifespan usually lasts only a few months without rest, can survive for decades.

Werner Syndrome and Hutchinson Gilford Progeria Syndrome are two examples of the rare genetic disorders known as progeroid syndromes that cause signs of premature aging in children and young adults. Patients with progeroid syndromes have pathologies and symptoms that are often linked to aging, including osteoporosis, cataracts, heart disease, and type II diabetes.

This aging is characterized by the gradual loss of nuclear architecture and an underlying tissue-specific genetic program, but the causes are unclear. Scientists have discovered a potential new target for treating these syndromes by preventing nuclear architecture loss.

Dr. Peter Fedichev, Ph.D. is the CEO of Gero (https://gero.ai/), a biotech company focused on hacking complex diseases, including aging, with AI for novel drug discovery, as well as digital biomarkers.

Gero’s models originate from the physics of complex dynamic systems, combining the potential of deep neural networks with the physical models to study dynamical processes and understand what drives diseases.

Dr. Fedichev has a background in biophysics, bioinformatics and condensed matter physics, earning his Ph.D. from the University of Amsterdam, and he conducted research at FOM Institute AMOLF (part of the institutes organization of the Dutch Research Council of Netherlands) and the University of Innsbruck.

To date, Dr Fedichev has published over 70 papers covering his research on physics, biophysics and aging biology.

Turtles, unlike humans, do not continue to age once their bodies reach adulthood because they are “negligibly senescent.” It is theoretically possible for them to live indefinitely, although it is unlikely to happen in actuality. They will eventually die of injury, predation, or sickness. It has been documented that tortoises and their cousins, turtles, can live for up to two hundred years without showing any signs of aging. A turtle that is a hundred years old can experience the same feelings of youth as a tortoise that is thirty years old. This enviable trait may be found in both fish and amphibians. The idea of aging terrifies humans, and it is understandable why. Nobody wants to age slowly and painfully into a state of ill health and old age where death appears preferable to life. However, not everyone thinks this way. There are others who desire to live longer, perhaps even indefinitely. And while a life without aging might sound like something that could only be found in the pages of a fantasy story, research in the field of science suggests that this possibility is very much within our reach.

In today’s video we look at Live until 200 YRS OLD!! Scientific cures for “The Aging Disease!” ~ Healthicity…Keep watching to see aging, the ageing, the healthy aging, is an aging expert, is aging slower, and reverse aging, fighting aging, how to fight aging, anti aging, aging wired, wired aging, aging matters, aging questions, how to stop aging, science of aging, ageing research, anti aging, aging tech support, slow aging, aging women, what is aging, allure aging, aging beauty, active aging, disrupt aging, aging support, aging science, decoding aging, future of aging, aging with grace.

Subscribe for Mental Health, Brain Health, and Psychology. Inspired by body hub, bestie, and BRIGHT SIDE

Inspired by the science of slowing down aging | WIRED

Extending the limit of the human lifespan. The first immortal human has already been born.
“The first human to live to 1,000 has already been born” – Dr. Aubrey de Grey. How far are we in understanding aging and death? Do we have to age or is it a matter of a choice? What is the future of immortality? Is it possible to be immortal and if yes — how far are we in implementing medical treatment and technology that can forestall this natural process we have always thought “is just how life is”.
In this video I am reviewing the cutting-edge technologies and the pioneers in the field of extending life expectancy and reaching immortality eventually. Hint: is it closer than you might imagine!

SUBSCRIBE TO THE CHANNEL!!!

And also CHECK OUT my RUMBLE account: https://rumble.com/c/c-1385001 where I’m uploading my content as well. In near future I might be uploading more videos there.

If you are eager to learn more in depth on this topic here are some of the resources I used to create this video:

Recent evidence points out the role of the gut microbiota in the aging process. However, the specific changes and relevant interventions remain unclear. In this study, Senescence Accelerated Mouse-Prone 8 (SAMP8) mice were divided into four groups; young-FMT-group transplanted fecal microbiota from young donors (2–3°months old) and old-FMT-group transplanted from old donors (10–11°months old); additionally, other two groups either adult mice injected with saline solution or untreated mice served as the saline and blank control groups, respectively. All mice were intervened from their 7-months-old until 13-months-old. The open field test at 9 and 11°months of age showed that the mice transplanted with gut microbiota from young donors had significantly better locomotor and exploration ability than those of transplanted with old-donors gut microbiota and those of saline control while was comparable with the blank control. 16S rRNA gene sequencing showed that the gut microbiome of recipient mice of young donors was altered at 11°months of age, whereas the alternation of the gut microbiome of old-donor recipient mice was at 9°months. For comparison, the recipient mice in the blank and saline control groups exhibited changes in the gut microbiome at 10°months of age. The hallmark of aging-related gut microbiome change was an increase in the relative abundance of Akkermansia, which was significantly higher in the recipients transplanted with feces from older donors than younger donors at 9°months of age. This study shows that fecal microbiota transplantation from younger donors can delay aging-related declines in locomotor and exploration ability in mice by changing the gut microbiome.

Aging is inherently accompanied by the decline of physical and mental abilities, including locomotor, cognition, and bodily functions, to subsequently cause frailty syndrome, neurodegenerative diseases, and other age-related diseases, which reduce the quality of life of the aging population (Hou et al., 2019). Aging mechanisms and anti-aging interventions have long been a major focus of biomedical research, which is particularly relevant given the rapidly aging society.

The gut is a major organ for nutrients absorption, metabolism, and immunity, and contains hundreds of millions of microorganisms and their metabolites, which comprise the gut microbiota (Heintz and Mair, 2014) that interacts with host cells and tissues (Huang et al., 2021). Our previous study reported continuous changes in the gut microbiome of centenarians during their transition from a healthy status to death. The most significant changes of gut microbial communities in the period were found to occur at 7°months prior to death, suggesting that this may be a turning point of significant changes in the gut microbiome of centenarians (Luan et al., 2020). Recent studies have revealed an important relationship between the gut microbiome and aging-related diseases such as Alzheimer disease (Ticinesi et al., 2018; Haran and McCormick, 2021), suggesting that the gut microbiome plays an essential role in the aging process.