Toggle light / dark theme

How immunity contributes to aging and neurodegeneration

As we age, our bodies undergo various changes that can impact our overall health and make us more susceptible to diseases. One common factor in the aging process is low-grade inflammation, which contributes to age-related decline and impairment. However, the precise pathways responsible for this inflammation and their impact on natural aging have remained elusive until now.

A new study led by Andrea Ablasser at EPFL now shows that a molecular signaling pathway called cGAS/STING plays a critical role in driving and functional decline during aging. By blocking the STING protein, the researchers were able to suppress in senescent cells and tissues, leading to improvements in tissue function.

The findings are published in the journal Nature.

Aging process slows when older mice share circulatory system of young

A process of surgically joining the circulatory systems of a young and old mouse slows the aging process at the cellular level and lengthens the lifespan of the older animal by up to 10%.

Published in the journal Nature Aging, a study led by researchers at Duke University Medical Center in Durham, North Carolina, found that the longer the animals shared circulation, the longer the anti-aging benefits lasted once the two were no longer connected.

The findings suggest that the young benefit from a cocktail of components and chemicals in their blood that contributes to vitality, and these factors could potentially be isolated as therapies to speed healing, rejuvenate the body, and add years to an older individual’s life.

Scientists Put a Worm Brain in a Lego Robot Body — And It Worked

Year 2017 😗😁


The brain is really little more than a collection of electrical signals. If we can learn to catalogue those then, in theory, you could upload someone’s mind into a computer, allowing them to live forever as a digital form of consciousness, just like in the Johnny Depp film Transcendence.

But it’s not just science fiction. Sure, scientists aren’t anywhere near close to achieving such a feat with humans (and even if they could, the ethics would be pretty fraught), but there’s few better examples than the time an international team of researchers managed to do just that with the roundworm Caenorhabditis elegans.

C. elegans is a little nematodes that have been extensively studied by scientists — we know all their genes and their nervous system has been analysed many times.

Nanotech used to grow eye cells as a potential treatment for blindness

Researchers have used 3D nanotechnology to successfully grow human retinal cells, opening the door to a new way of treating age-related macular degeneration, a leading cause of blindness in the developed world.

In age-related macular degeneration (AMD), the macula, the part of the retina that controls sharp, straight-ahead vision, deteriorates and causes blurring in the central field of vision.

There are two types of AMD, ‘dry’ and ‘wet.’ Dry AMD is where the RPE cells in the macula break down, causing vision loss over time. It’s the most common type and mostly affects older people. In the rarer wet AMD, abnormal blood vessel growth into the macula causes fluid and blood leakage, damaging the retina and destruction of the RPE cells, leading to a rapid loss of vision.

Scientists in breakthrough towards secret of eternal youth

Science: In my opinion the main cause of aging is the accumulation of mutations in DNA 🧬 more than telomere size reduction or “toxin’s”. But the control of these “toxins” together with drug’s that simulate the restriction of calories and the transfusion of blood from young people to old people. And future drugs to make the telomeres grow again.

These four treatments together maybe can promote life extension. I am also enthusiastic in regenerative treatment with stem cells and “replace” old organs by new one’s growing in lab from stem cells. However I believe that immortality only when you make the enzymes “fix” in 100% the mutations caused by radicals.


High levels of toxic chemicals in the body, such as formaldehyde, which is best known as an embalming agent, have recently been found to be naturally made by cells and also to cause ageing.

Leading scientists from Cornell University, the University of Oxford, the University of Cambridge and Cancer Research UK are trying to understand what causes the body to overproduce formaldehyde.

It is hoped that drugs may be able to lower levels of it in the body and reverse the ageing process.

Discovery could lead to more treatments to prevent cancer and infectious diseases

“Many experts assumed that after birth, the thymus played little role in the development of these cells as we age, but we now know this little unsung organ helps the body prepare for a lifetime of good health,” he said.

“The more we know about these cells the greater the likelihood of unlocking new ways to treat infectious diseases and cancer.”

Researchers from the University of Melbourne, The Fiona Elsey Cancer Research Institute, Federation University, Peter Doherty Institute for Infection and Immunity, Melbourne Centre for Cardiovascular Genomics and Regenerative Medicine, The Royal Children’s Hospital and the Walter and Eliza Hall Institute of Medical Research also contributed to the findings.

Retina cell breakthrough could help treat blindness

When the scaffold is treated with a steroid called fluocinolone acetonide, which protects against inflammation, the resilience of the cells appears to increase, promoting growth of eye cells. These findings are important in the future development of ocular tissue for transplantation into the patient’s eye.


Scientists have found a way to use nanotechnology to create a 3D ‘scaffold’ to grow cells from the retina-paving the way for potential new ways of treating a common cause of blindness.

Researchers, led by Professor Barbara Pierscionek from Anglia Ruskin University (ARU), have been working on a way to successfully grow retinal pigment epithelial (RPE) cells that stay healthy and viable for up to 150 days. RPE cells sit just outside the neural part of the retina and, when damaged, can cause vision to deteriorate.

It is the first time this technology, called ‘electrospinning’, has been used to create a scaffold on which the RPE cells could grow, and could revolutionise treatment for one of age-related macular degeneration, one of the world’s most common vision complaints.

/* */