Toggle light / dark theme

An innovative programmable tool for targeting nucleic acids has been created, utilizing a prokaryotic immune defense system—and it is not CRISPR-Cas. Russian Academy of Sciences researchers have successfully re-engineered prokaryotic Argonautes (pAgos) to utilize RNA guides for locating nucleic acid sequences. These systems have been modified to form a complex with effector nucleases.

The researchers employed a two-component system known as SPARDA (short prokaryotic Argonaute, DNase, and RNase-associated) to effectively identify DNA sequences with a notable level of sensitivity and induce collateral nuclease activity. SPARDA and other concise pAgos systems that encode diverse effectors have the potential to offer a novel programmable tool for the field of biotechnology.

The research article “DNA-targeting short Argonautes complex with effector proteins for collateral nuclease activity and bacterial population immunity” was published in Nature Microbiology.

In a breakthrough that could help revolutionize wireless communication, researchers unveiled a novel method for manipulating terahertz waves, allowing them to curve around obstacles instead of being blocked by them.

While cellular networks and Wi-Fi systems are more advanced than ever, they are also quickly reaching their bandwidth limits. Scientists know that in the near future they’ll need to transition to much higher communication frequencies than what current systems rely on, but before that can happen there are a number of — quite literal — obstacles standing in the way.

Researchers from Brown University and Rice University say they’ve advanced one step closer to getting around these solid obstacles, like walls, furniture, and even people — and they do it by curving light.

An integrated plant that will remove 50,000 tonnes of carbon dioxide every year and create new freshwater from salty seawater is planned in the Daesan Industrial Complex in South Korea. When ready, this will be the world’s first such facility.

As countries work on their promises to go carbon neutral in a few decades, there is a strong push for innovative approaches that capture and utilize carbon. Carbon capture facilities work onsite to help reduce the release of carbon into the atmosphere. In contrast, direct air capture (DAC) technology focuses on removing the released carbon dioxide from the atmosphere.

POSTECH researchers have created a technique for controlling polaritons, which could lead to advancements in optical displays and various optoelectronic devices.

A research team consisting of Professor Kyoung-Duck Park and Hyeongwoo Lee, an integrated PhD student, from the Department of Physics at Pohang University of Science and Technology (POSTECH) has pioneered an innovative technique in ultra-high-resolution spectroscopy. Their breakthrough marks the world’s first instance of electrically controlling polaritons—hybridized light-matter particles—at room temperature.

Novel Characteristics of Polaritons.