Breakthrough could transform our exploration of the solar system, space agency says.

In a newly published study, scientists detail the development of electronic biosensors that can be regenerated and reused repeatedly.
Imagine a swarm of tiny devices only a few hundred nanometers in size that can detect trace amounts of toxins in a water supply or the very earliest signs of cancer in the blood. Now imagine that these tiny sensors can reset themselves, allowing for repeated use over time inside a body of water – or a human body.
Improving nanodevice biosensors is the goal of Mark Reed, Harold Hodgkinson Professor of Electrical Engineering at the Yale School of Engineering & Applied Science. Reed and his colleagues have reported a recent breakthrough in designing electronic biosensors that can be regenerated and reused repeatedly.
Researchers at the Fritz Haber Institute have advanced nanoscale optoelectronics by developing a method to control single-molecule photoswitching with atomic precision.
This method utilizes localized surface plasmons on semiconductor platforms to precisely adjust molecular configurations, enhancing device efficiency and adaptability. This innovation promises significant improvements in the miniaturization and functionality of future electronic and photonic devices, potentially impacting a wide range of applications including sensors and photovoltaic cells.
Groundbreaking Discovery in Nanoscale Optoelectronics.
China’s state-backed JFS Laboratory has unveiled the country’s first silicon photonics chip, a significant advancement that could revolutionize AI and high-performance computing. This novel technology uses lasers instead of traditional copper wires, offering increased bandwidth, reduced latency, and improved energy efficiency.
Researchers highlight LXRβ as a potential target for treating depression, anxiety, and autism. While promising, further studies are needed to confirm its effectiveness in humans.
In a state-of-the-art Bench to Bedside review published in the journal Brain Medicine (Genomic Press), Dr. Xiaoyu Song from the University of Houston and Professor Jan-Åke Gustafsson from Sweden’s Karolinska Institute explore the therapeutic potential of liver X receptor beta (LXRβ) in treating depression and anxiety. Their comprehensive analysis represents a major advancement in understanding the molecular mechanisms underlying mental health disorders, with the potential to transform future treatment approaches.
LXRβ, a nuclear receptor initially known for its role in cholesterol metabolism and inflammation, is now emerging as a crucial player in neuroscience and psychiatry. The review synthesizes recent breakthroughs in understanding LXRβ’s regulation and function in behaviors relevant to depression and anxiety, derived from studies using animal models that capture specific features of these disorders.
According to the National Institute of Environmental Health Services, nearly 50 million Americans are currently living with an autoimmune condition. It’s the third-largest category of diseases affecting the nation, according to the agency. Doctors and scientists have been using a number of promising CRISPR treatments to address some of these conditions; now, the results of a new study in China could offer a way to make these treatments even more widely available.
As Nature‘s Smriti Mallapaty explains, the study focused on three people whose treatments were created using donor cells as opposed to cells taken from the patients themselves. This is significant because the prospect of using donor cells allows for CRISPR treatments to be developed in larger quantities — something that could make a big difference in a lot of people’s lives around the world.
Mallapaty describes the three patients in the study as having “severe autoimmune conditions.” One of them, a man in his fifties with systemic sclerosis, said that he started feeling better within a few days, and was able to resume working two weeks after the treatment. This particular study isn’t the only one of its kind — Nature‘s reporting mentions that another trial was subsequently conducted with more patients, while another doctor is leading a similar study using donor cells to treat lupus.
An international research team led by Brandeis University has achieved a major breakthrough in the field of active matter physics, as detailed in a study published this week in Physical Review X. This pioneering research offers the first experimental validation of a key theoretical prediction about 3D active nematic liquid crystals by trapping them within cell-sized spherical droplets.
For the last three years,…
A UWE Bristol researcher hopes to revolutionise the jewellery industry and its supply chains with the creation of unique gemstone and jewellery designs with ground-breaking properties — including the world’s first single stone glow-in-the-dark manmade crystal.
For the last three years, award-winning jewellery designer Sofie Boons, who’s a Crafts Council Research Fellow at the university’s Centre for Print Research (CFPR), has been undertaking tests on the viability, limitations and use of innovative and experimentally grown crystals in the production of contemporary jewellery.
Working in collaboration with Swiss company BREVALOR Sarl and using their new material ‘BRG’, Sofie has successfully facetted a single stone out of the material – offering jewellery designers a crystal which is not only brilliant when seen in daylight, but illuminates when seen in the dark.