Toggle light / dark theme

“DNA, RNA and proteins are the key players to regulate all processes in the cells of our body,” Leiden Professor John van Noort explains. “To understand the (mis-)functioning of these molecules, it is essential to uncover how their 3D structure depends on their sequence and for this it is necessary to measure them one molecule at a time. However, single-molecule measurements are laborious and slow, and the number of possible sequence variations is massive.”

Now the team of scientists developed an innovative tool, called SPARXS (Single-molecule Parallel Analysis for Rapid eXploration of Sequence space), that allows for studying millions of DNA molecules simultaneously.

“Traditional techniques that allow one sequence to be probed at a time usually take hours of measurement time per sequence. With SPARXS, we can measure millions of molecules within a day to a week. Without SPARXS, such a measurement would take several years to decades,” says Delft Professor Chirlmin Joo.

Integrated photonic circuits operating at room temperature combined with optical nonlinear effects could revolutionize both classical and quantum signal processing. Scientists from the Faculty of Physics at the University of Warsaw, in collaboration with other institutions from Poland as well as Italy, Iceland, and Australia, have demonstrated the creation of perovskite crystals with predefined shapes that can serve in nonlinear photonics as waveguides, couplers, splitters, and modulators.

Researchers discovered a significant anomalous Hall effect in the magnetic material SrCo6O11 at temperatures above its magnetic transition, where it exhibits a phenomenon known as the “Spin-Fluctuating Devil’s Staircase.” This observation could revolutionize the design of materials for magneto-thermoelectric conversion, impacting the development of new thermoelectric materials.

Here’s a bit of background: When an electric current flows through a metal sample in a magnetic field, it experiences the Lorentz force. This force generates a voltage perpendicular to the magnetic field and current—a phenomenon referred to as the Hall effect.

In magnetic metals, a similar phenomenon—known as the anomalous Hall effect—may occur independently of an external magnetic field, particularly in ferromagnetic materials wherein electron spins are aligned. Generally, this alignment—and thus the anomalous Hall effect—only manifests below a certain temperature, known as the magnetic transition temperature.

Researchers at the University of Texas have developed an AI that predicted 70% of earthquakes during a trial in China, indicating potential for future quake risk mitigation.

The AI, trained on seismic data, also ranked first in an international competition, underscoring its effectiveness and opening doors for further enhancements in regions like California and Texas.

AI Earthquake Prediction Breakthrough

“That is a highlight of this building that it’s very close to talent — people who are still in this area because they just graduated,” said Knight, The Engine Accelerator’s president and chief executive.

The Engine Accelerator is where companies solving hard problems get off the ground. It’s part coworking space, with open desks, office suites, and conference rooms for rent. It’s part startup accelerator, hosting a high-octane circle of young scientists and engineers who need help turning their ideas into full-fledged operations.

If WeWork and Y Combinator had a baby, and that baby wanted to bring breakthrough research out of the lab and into the real world, it’d look something like The Engine.

NASA’s X-59 QueSST (Quiet Supersonic Technology) aircraft is on the brink of making history, as it nears its highly anticipated maiden flight.

Designed to break the sound barrier without producing the disruptive sonic boom traditionally associated with supersonic speeds, the X-59 promises to revolutionize air travel.

With a sleek design and innovative technology, the aircraft has the potential to open up a new era of quieter supersonic flights, particularly over land—a feat that has been unattainable since the era of the Concorde.