Toggle light / dark theme

Soon after the invention of the laser in the late 1950s many dubbed the discovery as a solutYou’ve reached the limit of what you can view on Physics World without registering If you already have an account on Physics World, then please sign in to continue reading If you do not yet have an account, …

Read more

Recent attempts to move beyond narrow AI applications in industry have struggled to gain traction. ReThink Robotics, a leading startup founded by AI founding MIT researcher Dr. Rodney Brooks to create adaptive collaborative robots for industrial robotics, closed its doors in October 2018 and has since had its IP acquired by HAHN Group. In a retrospective published by The Robot Report, several contributing factors led to the shutdown. ReThink’s reliance on series elastic actuators compromised the precision and repeatability found in typical actuators in favor of safety, which likely led to efforts to compensate on hardware through software.

While the company utilized innovative machine control and machine vision technologies in iterating on their robots, the combination of mechanical motion of firmware at the heart of their products led to a narrow range of issues at varying quality. This made Baxter and Sawyer, ReThink’s flagship industrial robots, ill-suited for adaptive industrial use.

Other companies attempting to build adaptive robots, including Jibo, have met similar troubles. Touted as an interactive social robot with a personality, Jibo launched their eponymous robot in November 2017 with an emphasis on naturalistic human-computer interaction, but entered the market with more limited functionality than cheaper smart assistant speakers. The company has since closed down and transferred ownership of their IP to SQN Venture Partners in November 2018.

Read more

Scientists at the University of Helsinki working in collaboration with the University of Oxford have deciphered for the first time how a virus genome is condensed inside the capsid of a virus.

“The motivation of the study was to increase our basic understanding of viral replication, but in the long term this may contribute to tackling viral disease,” says the director of the of the project, Associate Professor Juha Huiskonen from the Helsinki Institute of Life Science, HiLIFE.

The breakthrough results were achieved using cryogenic electron microscopy, a method that has in recent years revolutionised —a field of biology that aims to understand how molecules of life work at the atomic level.

Read more

Hosted by Dr. Oliver Medvedik, the May edition of Journal Club will focus on the recent publication by the Spiegel Lab at Yale University where two forms of advanced glycation end products were successfully cleaved. We already discussed this important breakthrough in our article – Reversal of Two Advanced Glycation End Products Achieved. Now we will be taking a deeper look at the data during the journal club.

Link to Paper:

https://sci-hub.tw/https://onlinelibrary.wiley.com/doi/pdf/1.…201900158

Read more

Researchers from Sweden’s Chalmers University of Technology and the University of Gothenburg present a new method which can double the energy of a proton beam produced by laser-based particle accelerators. The breakthrough could lead to more compact, cheaper equipment that could be useful for many applications, including proton therapy.

Proton therapy involves firing a beam of accelerated protons at cancerous tumours, killing them through irradiation. But the equipment needed is so large and expensive that it only exists in a few locations worldwide.

Modern high-powered lasers offer the potential to reduce the equipment’s size and cost, since they can accelerate particles over a much shorter distance than traditional accelerators — reducing the distance required from kilometres to metres. The problem is, despite efforts from researchers around the world, laser generated proton beams are currently not energetic enough. But now, the Swedish researchers present a new method which yields a doubling of the energy — a major leap forward.

Read more

In a terrifying breakthrough similar to the metal morphing villain in Terminator 2, scientists at the University of Sussex and Swansea University have discovered a way to apply electrical charges to liquid metal and coax it into 3D shapes such as letters and even a heart.

This discovery has been called an “extremely promising” new kind of material that can be programmed to alter its shape.

Yutaka Tokuda, the Research Associate, working on this project at the University of Sussex, says: “This is a new class of programmable materials in a liquid state which can dynamically transform from a simple droplet shape to many other complex geometry in a controllable manner.

Read more

Advanced propulsion breakthroughs are near. Spacecraft have been stuck at slow chemical rocket speeds for years and weak ion drive for decades. However, speeds over one million miles per hour before 2050 are possible. There are surprising new innovations with technically feasible projects.

NASA Institute for Advanced Concepts (NIAC) is funding two high potential concepts. New ion drives could have ten times better in terms of ISP and power levels ten thousand times higher. Antimatter propulsion and multi-megawatt ion drives are being developed.

Read more