Toggle light / dark theme

8 Digital Health Jobs of the Future to Watch

Agree. So as a tech engineer, futurist, innovator, leader you have 3 key tracks to remain relevant in the future: bio/ living technology, quantum, and a hybrid of living/ bio meets quantum computing.


Editor €™s Note: Richard van Hooijdonk is a futurist and international keynote speaker on future technologies and disruption and how these technologies change our everyday lives. Van Hooijdonk and his international team research €˜mega trends €™ on digital health, robotic surgery, drones, the internet-of-things, 3D/4D printing, Big Data and other how new technologies affects many industries.

With people living increasingly longer lives, medical care from surgeons, physicians, pharmacists and dentists will increase as well. And since the future of healthcare will look very different from what it is today, the medical field may just be the right industry for you, even if being a doctor or nurse is not your calling. Many new technologies will be incorporated into the healthcare industry and we will see things like robotic surgeries and 3D-printed organ implants, to name a few. This means we will be seeing a whole new host of career opportunities, even for jobs that don €™t actually exist yet.

1. Healthcare Navigator €“ Guides patients through the complex medical system of the future

Being sick can be extremely stressful €“ to yourself, the doctors and nursing staff. But your family and loved ones also have a lot to deal with when you are ill. Technology will make healthcare more and more complex to navigate in the future. We €™ll be introduced to bio-printers, electronic pills, 3D-printed medication, surgical robots and DNA manipulation. To make sense of all these new technologies and treatments, and guide the patient as well as family members, healthcare navigators will become indispensible.

Microsoft’s LinkedIn buy escalates cloud wars

“With the LinkedIn acquisition, Microsoft snares two prizes: the massive amounts of data contained in LinkedIn’s 433 million member profiles that are kept scrupulously up to date by business professionals and to which competitors have no access and the brainy computer algorithms that crunch that data.” the writeup.


Buying the Facebook of professional networks is perhaps the best illustration yet that the cloud wars are heating up.

Researchers demonstrate a 100x increase in the amount of information that can be ‘packed into light’

The rise of big data and advances in information technology has serious implications for our ability to deliver sufficient bandwidth to meet the growing demand.

Researchers at the University of the Witwatersrand in Johannesburg, South Africa, and the Council for Scientific and Industrial Research (CSIR) are looking at alternative sources that will be able to take over where traditional optical communications systems are likely to fail in future.

In their latest research, published online today (10 June 2016) in the scientific journal, Scientific Reports, the team from South Africa and Tunisia demonstrate over 100 patterns of used in an optical communication link, potentially increasing the of by 100 times.

Tennessee startup plans to create 3D printed house

Wishing them luck.


Tennessee -based Branch Technology has announced it will begin construction of a 3D-printed house in 2017. Designed by Honolulu-based WATG, the project was initiated for the Freeform Home Design Challenge, which asked participants to design for Branch’s Cellular Fabrication (C-Fab) 3D printing technology. The small house designs were required to be between 600 and 800 square feet.

Branch’s C-Fab technology involves 3D printing carbon-fiber-reinforced ABS plastic with a large robotic arm. The resulting formwork can then be covered in more traditional building materials, such as concrete or foam. Instead of the typical completely 3D printed additive technique, C-Fab uses an algorithm to formulate an interior framework for the structure.

WATG’s design, entitled Curve Appeal, will be built at Branch Technology’s lab in Chattanooga, Tennessee. The house is comprised of a curving shell around an open plan. The form of the building also provides a car port. The interior of the house is divided up with class walls and a solid core.

Walking and talking behaviors may help predict epidemics and trends

Wow!


Mobile phone data may reveal an underlying mathematical connection between how we move and how we communicate that could make it easier to predict how diseases—and even ideas—spread through a population, according to an international team of researchers.

“This study really deepens our quantitative understanding of human behavior,” said Dashun Wang, assistant professor of and technology, Penn State. “We would like to think that we control our own behavior and we can do what we want to do. But, what we are starting to see with is that there is a very deep regularity underlying much of what we do.”

In a study, location and communication data collected from three international carriers showed that people move and communicate in predictable patterns, said Wang.

Historian: When Computers and Biology Converge, Organisms Become Algorithms

On May 11, 2016, the Berggruen Philosophy and Culture Center invited Yuval Noah Harari, a professor of history at Hebrew University of Jerusalem and author of the international bestseller “Sapiens: A Brief History of Humankind,” to deliver a talk on “The New Inequalities” at Tsinghua University in Beijing. Prior to the talk, Harari was interviewed by BPPC director Daniel A. Bell. This is an edited transcript of the interview.

You argue in your book that material progress, for example in the agriculture revolution and industrial capitalism doesn’t necessarily contribute to human happiness. In fact, it may lead to the opposite. Can you elaborate on that?

Until the middle of the 19th century there was a complete lack of correlation between material progress and the well-being of individual humans. For thousands of years until about 1850 you see humans accumulating more and more power by the invention of new technologies and by new systems of organization in the economy and in politics, but you don’t see any real improvement in the well-being of the average person. If you are the emperor of China, then obviously you’re much better off. But if you’re an average Chinese peasant in 1850, it’s very, very hard to say that your life is any better than the life of hunter-gatherers in the Yangtze Valley 20,000 years ago. You work much harder than them, your diet is worse, you suffer far more from infectious diseases, and you suffer far more from social inequality and economic exploitation.

What Will Electronics & Semiconductors Be Like In 100 Years?

When I 1st read this headline, I had to pause and ask myself “was the article’s author informed at all on QC?” especially given China’s own efforts much less D-Wave, Google, and University of Sydney. And, then I read the article and I still have to wonder if the author is on top of the emerging technologies such as BMI, graphene, QC, and other nanotechnology that are already being tested to go live in the next 7 to 10 years plus much of the content is very superficial at best. I am glad that the author did put the tid bit on Singularity as the endpoint state; however, that is pretty well known. Nonetheles, sharing to let you be the judge.


For decades, we relied on silicon as the semiconductor for our computer chips. But now, working at nanometer scales, it looks like physical limitations may end the current methods to include more and more processing power onto each individual chip.

Many companies are making billion-dollar investments to continue scaling down semiconductor technology. The pressures of big data and cloud computing are pushing the limits of the current semiconductor technology in terms of bandwidth, memory, processing speed, and device power consumption.

Today’s state-of-the-art silicon chips are engineered at the 22- and 14-nanometer scale. Research is underway to take that down to 10-nanometer scale in the next several years.

/* */