Toggle light / dark theme

Bioengineers Develop Algorithm to Compare Cells Across Species – With Striking Results

Researchers created an algorithm to identify similar cell types from species – including fish, mice, flatworms and sponges – that have diverged for hundreds of millions of years, which could help fill in gaps in our understanding of evolution.

Cells are the building blocks of life, present in every living organism. But how similar do you think your cells are to a mouse? A fish? A worm?

Comparing cell types in different species across the tree of life can help biologists understand how cell types arose and how they have adapted to the functional needs of different life forms. This has been of increasing interest to evolutionary biologists in recent years because new technology now allows sequencing and identifying all cells throughout whole organisms. “There’s essentially a wave in the scientific community to classify all types of cells in a wide variety of different organisms,” explained Bo Wang, an assistant professor of bioengineering at Stanford University.

Simple Diagnostic Tool Predicts Individual Risk of Alzheimer’s

Summary: A new algorithm that uses data from memory tests and blood samples is able to accurately predict an individual’s risk for developing Alzheimer’s disease.

Source: Lund University.

Researchers at Lund University in Sweden have developed an algorithm that combines data from a simple blood test and brief memory tests, to predict with great accuracy who will develop Alzheimer’s disease in the future.

Probing deeper into origins of cosmic rays

Cosmic rays are high-energy atomic particles continually bombarding Earth’s surface at nearly the speed of light. Our planet’s magnetic field shields the surface from most of the radiation generated by these particles. Still, cosmic rays can cause electronic malfunctions and are the leading concern in planning for space missions.

Researchers know cosmic rays originate from the multitude of stars in the Milky Way, including our sun, and other galaxies. The difficulty is tracing the particles to specific sources, because the turbulence of interstellar gas, plasma, and dust causes them to scatter and rescatter in different directions.

In AIP Advances, University of Notre Dame researchers developed a to better understand these and other cosmic ray transport characteristics, with the goal of developing algorithms to enhance existing detection techniques.

The MIT humanoid robot: A dynamic robotic that can perform acrobatic behaviors

Creating robots that can perform acrobatic movements such as flips or spinning jumps can be highly challenging. Typically, in fact, these robots require sophisticated hardware designs, motion planners and control algorithms.

Researchers at Massachusetts Institute of Technology (MIT) and University of Massachusetts Amherst recently designed a new humanoid supported by an actuator-aware kino-dynamic motion planner and a landing controller. This design, presented in a paper pre-published on arXiv, could allow the humanoid robot to perform back flips and other acrobatic movements.

“In this work, we tried to come up with realistic control algorithm to make a real humanoid robot perform acrobatic behavior such as back/front/side-flip, spinning jump, and jump over an obstacle,” Donghyun Kim, one of the researchers who developed the robot’s software and controller, told TechXplore. “To do that, we first experimentally identified the actuator performance and then represent the primary limitations in our motion planner.”

Molecular Biologists Travel Back in Time – Over 3 Billion Years

A research group working at Uppsala University has succeeded in studying ‘translation factors’ – important components of a cell’s protein synthesis machinery – that are several billion years old. By studying these ancient ‘resurrected’ factors, the researchers were able to establish that they had much broader specificities than their present-day, more specialized counterparts.

In order to survive and grow, all cells contain an in-house protein synthesis factory. This consists of ribosomes and associated translation factors that work together to ensure that the complex protein production process runs smoothly. While almost all components of the modern translational machinery are well known, until now scientists did not know how the process evolved.

The new study, published in the journal Molecular Biology and Evolution, took the research group led by Professor Suparna Sanyal of the Department of Cell and Molecular Biology on an epic journey back into the past. A previously published study used a special algorithm to predict DNA sequences of ancestors of an important translation factor called elongation factor thermo-unstable, or EF-Tu, going back billions of years. The Uppsala research group used these DNA sequences to resurrect the ancient bacterial EF-Tu proteins and then to study their properties.

Scientists Just Made A Quantum Computing Breakthrough!!

Keep watching to look at three of the most fantastic quantum breakthroughs that bring liberation and freedom to the world of science today! Subscribe to Futurity for more videos.

#quantum #quantumcomputing #google.

As we advance as a species, there are a lot of things that once seemed impossible a century ago that are now a reality. It’s called evolving. For example, there was a time when most people believed the earth was flat. Then Eratosthenes came onto the scene and proved that the world is round.

At the time, it was groundbreaking. But today, quantum mechanics rules the roost. This school of physics deals with the physical realm on the scale of atoms and electrons; thus making many of the equations in classical mechanics useless. With that being said, let’s take a look at three of the most amazing quantum breakthroughs that are bringing liberation and freedom to the world of science today!

We kick things off with a team of Chinese scientists claiming to have constructed a quantum computer that has the ability to perform certain computations almost 100 trillion times faster than the world’s most advanced supercomputer.

The breakthrough sheds light on quantum computational advantage—which is also famously known as quantum supremacy. But it’s become a hotly-contested tech race between Chinese researchers and some of the largest US tech corporations such as Amazon, Google, and Microsoft.

Researchers see atoms at record resolution

In 2018, Cornell researchers built a high-powered detector that, in combination with an algorithm-driven process called ptychography, set a world record by tripling the resolution of a state-of-the-art electron microscope.

As successful as it was, that approach had a weakness. It only worked with ultrathin samples that were a few thick. Anything thicker would cause the electrons to scatter in ways that could not be disentangled.

Now a team, again led by David Muller, the Samuel B. Eckert Professor of Engineering, has bested its own record by a factor of two with an electron microscope pixel array detector (EMPAD) that incorporates even more sophisticated 3D reconstruction algorithms.